LEADER 03198nam 22006615 450 001 996466482303316 005 20200706062150.0 010 $a3-540-92847-2 024 7 $a10.1007/978-3-540-92847-8 035 $a(CKB)1000000000718094 035 $a(SSID)ssj0000318183 035 $a(PQKBManifestationID)11283540 035 $a(PQKBTitleCode)TC0000318183 035 $a(PQKBWorkID)10308958 035 $a(PQKB)10322723 035 $a(DE-He213)978-3-540-92847-8 035 $a(MiAaPQ)EBC3064148 035 $a(PPN)134130707 035 $a(EXLCZ)991000000000718094 100 $a20100301d2009 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aHydrodynamic Limits of the Boltzmann Equation$b[electronic resource] /$fby Laure Saint-Raymond 205 $a1st ed. 2009. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2009. 215 $a1 online resource (XII, 194 p. 9 illus.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1971 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-92846-4 320 $aIncludes bibliographical references (p. 181-186) and index. 327 $aThe Boltzmann equation and its formal hydrodynamic limits -- Mathematical tools for the derivation of hydrodynamic limits -- The incompressible Navier-Stokes limit -- The incompressible Euler limit -- The compressible Euler limit. 330 $aThe aim of this book is to present some mathematical results describing the transition from kinetic theory, and, more precisely, from the Boltzmann equation for perfect gases to hydrodynamics. Different fluid asymptotics will be investigated, starting always from solutions of the Boltzmann equation which are only assumed to satisfy the estimates coming from physics, namely some bounds on mass, energy and entropy. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1971 606 $aContinuum physics 606 $aPartial differential equations 606 $aStatistics  606 $aClassical and Continuum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P2100X 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aStatistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/S17020 615 0$aContinuum physics. 615 0$aPartial differential equations. 615 0$aStatistics . 615 14$aClassical and Continuum Physics. 615 24$aPartial Differential Equations. 615 24$aStatistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 676 $a532.5 686 $aMAT 352f$2stub 686 $aPHY 058f$2stub 686 $aPHY 220f$2stub 686 $aSI 850$2rvk 700 $aSaint-Raymond$b Laure$4aut$4http://id.loc.gov/vocabulary/relators/aut$0472383 906 $aBOOK 912 $a996466482303316 996 $aHydrodynamic limits of the Boltzmann equation$9230300 997 $aUNISA