LEADER 02575nam 2200601 450 001 996466482103316 005 20220303110329.0 010 $a3-540-47915-5 024 7 $a10.1007/BFb0077985 035 $a(CKB)1000000000437548 035 $a(SSID)ssj0000325363 035 $a(PQKBManifestationID)12069132 035 $a(PQKBTitleCode)TC0000325363 035 $a(PQKBWorkID)10340072 035 $a(PQKB)10430992 035 $a(DE-He213)978-3-540-47915-4 035 $a(MiAaPQ)EBC5591622 035 $a(Au-PeEL)EBL5591622 035 $a(OCoLC)1066194947 035 $a(MiAaPQ)EBC6842818 035 $a(Au-PeEL)EBL6842818 035 $a(OCoLC)793079010 035 $a(PPN)155208144 035 $a(EXLCZ)991000000000437548 100 $a20220303d1987 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aOn the C [ast] -algebras of foliations in the plane /$fXiaolu Wang 205 $a1st ed. 1987. 210 1$aBerlin :$cSpringer-Verlag,$d[1987] 210 4$dİ1987 215 $a1 online resource (X, 170 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1257 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-387-17903-8 311 $a3-540-17903-8 327 $aFoliations of the plane -- Various trees and graphs -- Distinguished trees -- The C*-algebras of foliations of the plane. 330 $aThe main result of this original research monograph is the classification of C*-algebras of ordinary foliations of the plane in terms of a class of -trees. It reveals a close connection between some most recent developments in modern analysis and low-dimensional topology. It introduces noncommutative CW-complexes (as the global fibred products of C*-algebras), among other things, which adds a new aspect to the fast-growing field of noncommutative topology and geometry. The reader is only required to know basic functional analysis. However, some knowledge of topology and dynamical systems will be helpful. The book addresses graduate students and experts in the area of analysis, dynamical systems and topology. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1257 606 $aFoliations (Mathematics) 615 0$aFoliations (Mathematics) 676 $a514.72 700 $aWang$b Xiaolu$056484 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466482103316 996 $aC-algebras of foliations in the plane$9343523 997 $aUNISA