LEADER 04854nam 22007575 450 001 996466480803316 005 20200704233538.0 010 $a3-642-31695-6 024 7 $a10.1007/978-3-642-31695-1 035 $a(CKB)3400000000102751 035 $a(SSID)ssj0000788854 035 $a(PQKBManifestationID)11462938 035 $a(PQKBTitleCode)TC0000788854 035 $a(PQKBWorkID)10828719 035 $a(PQKB)10974478 035 $a(DE-He213)978-3-642-31695-1 035 $a(MiAaPQ)EBC3070963 035 $a(PPN)16832007X 035 $a(EXLCZ)993400000000102751 100 $a20121009d2013 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aIntroduction to Stokes Structures$b[electronic resource] /$fby Claude Sabbah 205 $a1st ed. 2013. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2013. 215 $a1 online resource (XIV, 249 p. 14 illus., 1 illus. in color.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2060 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-31694-8 320 $aIncludes bibliographical references and index. 327 $g1.$tT-filtrations --$g2.$tStokes-filtered local systems in dimension one --$g3.$tAbelianity and strictness --$g4.$tStokes-perverse sheaves on Riemann surfaces --$g5.$tThe Riemann-Hilbert correspondence for holonomic D-modules on curves --$g6.$tApplications of the Riemann-Hilbert correspondence to holonomic distributions --$g7.$tRiemann-Hilbert and Laplace on the affine line (the regular case) --$g8.$tReal blow-up spaces and moderate de Rham complexes --$g9.$tStokes-filtered local systems along a divisor with normal crossings --$g10.$tThe Riemann-Hilbert correspondence for good meromorphic connections (case of a smooth divisor) --$g11.$tGood meromorphic connections (formal theory) --$g12.$tGood meromorphic connections (analytic theory) and the Riemann-Hilbert correspondence --$g13.$tPush-forward of Stokes-filtered local systems --$g14.$tIrregular nearby cycles --$g15.$tNearby cycles of Stokes-filtered local systems. 330 $aThis research monograph provides a geometric description of holonomic differential systems in one or more variables. Stokes matrices form the extended monodromy data for a linear differential equation of one complex variable near an irregular singular point. The present volume presents the approach in terms of Stokes filtrations. For linear differential equations on a Riemann surface, it also develops the related notion of a Stokes-perverse sheaf. This point of view is generalized to holonomic systems of linear differential equations in the complex domain, and a general Riemann-Hilbert correspondence is proved for vector bundles with meromorphic connections on a complex manifold. Applications to the distributions solutions to such systems are also discussed, and various operations on Stokes-filtered local systems are analyzed. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2060 606 $aAlgebraic geometry 606 $aDifferential equations 606 $aApproximation theory 606 $aSequences (Mathematics) 606 $aFunctions of complex variables 606 $aPartial differential equations 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 606 $aOrdinary Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12147 606 $aApproximations and Expansions$3https://scigraph.springernature.com/ontologies/product-market-codes/M12023 606 $aSequences, Series, Summability$3https://scigraph.springernature.com/ontologies/product-market-codes/M1218X 606 $aSeveral Complex Variables and Analytic Spaces$3https://scigraph.springernature.com/ontologies/product-market-codes/M12198 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 615 0$aAlgebraic geometry. 615 0$aDifferential equations. 615 0$aApproximation theory. 615 0$aSequences (Mathematics). 615 0$aFunctions of complex variables. 615 0$aPartial differential equations. 615 14$aAlgebraic Geometry. 615 24$aOrdinary Differential Equations. 615 24$aApproximations and Expansions. 615 24$aSequences, Series, Summability. 615 24$aSeveral Complex Variables and Analytic Spaces. 615 24$aPartial Differential Equations. 676 $a516.35 700 $aSabbah$b Claude$4aut$4http://id.loc.gov/vocabulary/relators/aut$0311999 906 $aBOOK 912 $a996466480803316 996 $aIntroduction to Stokes structures$9241611 997 $aUNISA