LEADER 03567nam 22006975 450 001 996466478403316 005 20230617035935.0 010 $a3-540-39399-4 024 7 $a10.1007/b13785 035 $a(CKB)1000000000230799 035 $a(SSID)ssj0000323928 035 $a(PQKBManifestationID)11245091 035 $a(PQKBTitleCode)TC0000323928 035 $a(PQKBWorkID)10305112 035 $a(PQKB)11364110 035 $a(DE-He213)978-3-540-39399-3 035 $a(MiAaPQ)EBC6299080 035 $a(MiAaPQ)EBC5585524 035 $a(Au-PeEL)EBL5585524 035 $a(OCoLC)166469097 035 $a(EXLCZ)991000000000230799 100 $a20150519d2003 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aImproved Bonferroni Inequalities via Abstract Tubes$b[electronic resource] $eInequalities and Identities of Inclusion-Exclusion Type /$fby Klaus Dohmen 205 $a1st ed. 2003. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2003. 215 $a1 online resource (X, 122 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1826 300 $aBased on author's habilitation thesis--Humboldt-University. 311 $a3-540-20025-8 320 $aIncludes bibliographical references and indexes. 327 $a1. Introduction and Overview -- 2. Preliminaries -- 3.Bonferroni Inequalities via Abstract Tubes -- 4. Abstract Tubes via Closure and Kernel Operators -- 5. Recursive Schemes -- 6. Reliability Applications -- 7. Combinatorial Applications and Related Topics -- Bibliography -- Index. 330 $aThis introduction to the recent theory of abstract tubes describes the framework for establishing improved inclusion-exclusion identities and Bonferroni inequalities, which are provably at least as sharp as their classical counterparts while involving fewer terms. All necessary definitions from graph theory, lattice theory and topology are provided. The role of closure and kernel operators is emphasized, and examples are provided throughout to demonstrate the applicability of this new theory. Applications are given to system and network reliability, reliability covering problems and chromatic graph theory. Topics also covered include Zeilberger's abstract lace expansion, matroid polynomials and Möbius functions. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1826 606 $aCombinatorics 606 $aAlgebra 606 $aOrdered algebraic structures 606 $aProbabilities 606 $aCombinatorics$3https://scigraph.springernature.com/ontologies/product-market-codes/M29010 606 $aOrder, Lattices, Ordered Algebraic Structures$3https://scigraph.springernature.com/ontologies/product-market-codes/M11124 606 $aProbability Theory and Stochastic Processes$3https://scigraph.springernature.com/ontologies/product-market-codes/M27004 615 0$aCombinatorics. 615 0$aAlgebra. 615 0$aOrdered algebraic structures. 615 0$aProbabilities. 615 14$aCombinatorics. 615 24$aOrder, Lattices, Ordered Algebraic Structures. 615 24$aProbability Theory and Stochastic Processes. 676 $a512.97 700 $aDohmen$b Klaus$4aut$4http://id.loc.gov/vocabulary/relators/aut$0149982 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466478403316 996 $aImproved Bonferroni inequalities via abstract tubes$9168037 997 $aUNISA