LEADER 02947nam 22006255 450 001 996466476203316 005 20200629203927.0 010 $a3-540-44475-0 024 7 $a10.1007/b98488 035 $a(CKB)1000000000231355 035 $a(SSID)ssj0000323738 035 $a(PQKBManifestationID)11258081 035 $a(PQKBTitleCode)TC0000323738 035 $a(PQKBWorkID)10303912 035 $a(PQKB)10570192 035 $a(DE-He213)978-3-540-44475-6 035 $a(MiAaPQ)EBC6284983 035 $a(MiAaPQ)EBC5585016 035 $a(Au-PeEL)EBL5585016 035 $a(OCoLC)162128282 035 $a(PPN)155180622 035 $a(EXLCZ)991000000000231355 100 $a20121227d2004 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aHeegner Modules and Elliptic Curves$b[electronic resource] /$fby Martin L. Brown 205 $a1st ed. 2004. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2004. 215 $a1 online resource (X, 518 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1849 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-22290-1 327 $aPreface -- Introduction -- Preliminaries -- Bruhat-Tits trees with complex multiplication -- Heegner sheaves -- The Heegner module -- Cohomology of the Heegner module -- Finiteness of the Tate-Shafarevich groups -- Appendix A.: Rigid analytic modular forms -- Appendix B.: Automorphic forms and elliptic curves over function fields -- References -- Index. 330 $aHeegner points on both modular curves and elliptic curves over global fields of any characteristic form the topic of this research monograph. The Heegner module of an elliptic curve is an original concept introduced in this text. The computation of the cohomology of the Heegner module is the main technical result and is applied to prove the Tate conjecture for a class of elliptic surfaces over finite fields; this conjecture is equivalent to the Birch and Swinnerton-Dyer conjecture for the corresponding elliptic curves over global fields. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1849 606 $aNumber theory 606 $aAlgebraic geometry 606 $aNumber Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M25001 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 615 0$aNumber theory. 615 0$aAlgebraic geometry. 615 14$aNumber Theory. 615 24$aAlgebraic Geometry. 676 $a512.3 700 $aBrown$b Martin L$4aut$4http://id.loc.gov/vocabulary/relators/aut$0108816 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466476203316 996 $aHeegner modules and elliptic curves$9262236 997 $aUNISA