LEADER 03537nam 2200601 450 001 996466474903316 005 20220305051012.0 010 $a3-540-47370-X 024 7 $a10.1007/BFb0086186 035 $a(CKB)1000000000437069 035 $a(DE-He213)978-3-540-47370-1 035 $a(MiAaPQ)EBC5590715 035 $a(Au-PeEL)EBL5590715 035 $a(OCoLC)1066178052 035 $a(MiAaPQ)EBC6842495 035 $a(Au-PeEL)EBL6842495 035 $a(OCoLC)793079249 035 $a(PPN)15519741X 035 $a(EXLCZ)991000000000437069 100 $a20220305d1991 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aProspects in complex geometry $eproceedings of the 25th Taniguchi International Symposium held in Katata, and the conference held in Kyoto, July 31-August 9, 1989 /$fJ. Noguchi, T. Ohsawa, editors 205 $a1st ed. 1991. 210 1$aBerlin, Heidelberg :$cSpringer-Verlag,$d[1991] 210 4$d©1991 215 $a1 online resource (VI, 126 p.) 225 1 $aLecture Notes in Mathematics ;$v1468 311 $a0-387-54053-9 311 $a3-540-54053-9 327 $aHyperkähler structure on the moduli space of flat bundles -- Hardy spaces and BMO on Riemann surfaces -- Application of a certain integral formula to complex analysis -- On inner radii of Teichmüller spaces -- On the causal structures of the silov boundaries of symmetric bounded domains -- The behavior of the extremal length function on arbitrary Riemann surface -- A strong harmonic representation theorem on complex spaces with isolated singularities -- Mordell-Weil lattices of type E8 and deformation of singularities -- The spectrum of a Riemann surface with a cusp -- Moduli spaces of harmonic and holomorphic mappings and diophantine geometry -- Global nondeformability of the complex projective space -- Some aspects of hodge theory on non-complete algebraic manifolds -- Lp-Cohomology and satake compactifications -- Harmonic maps and Kähler geometry -- Complex-analyticity of pluriharmonic maps and their constructions -- Higher eichler integrals and vector bundles over the moduli of spinned Riemann surfaces. 330 $aIn the Teichmüller theory of Riemann surfaces, besides the classical theory of quasi-conformal mappings, vari- ous approaches from differential geometry and algebraic geometry have merged in recent years. Thus the central subject of "Complex Structure" was a timely choice for the joint meetings in Katata and Kyoto in 1989. The invited participants exchanged ideas on different approaches to related topics in complex geometry and mapped out the prospects for the next few years of research. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1468. 606 $aGeometry, Differential$vCongresses 606 $aFunctions of several complex variables$vCongresses 606 $aGeometry$vCongresses 615 0$aGeometry, Differential 615 0$aFunctions of several complex variables 615 0$aGeometry 676 $a516.36 702 $aNoguchi$b Junjiro?$f1948- 702 $aO?sawa$b Takeo$f1951- 712 02$aTaniguchi Ko?gyo? Sho?reikai.$bDivision of Mathematics.$bInternational Symposium$d(25th :$f1989 :$eKatata-cho?, Japan) 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466474903316 996 $aProspects in complex geometry$9262327 997 $aUNISA