LEADER 03219nam 22006495 450 001 996466473303316 005 20200630233647.0 010 $a3-540-31552-7 024 7 $a10.1007/b104912 035 $a(CKB)1000000000231910 035 $a(DE-He213)978-3-540-31552-0 035 $a(SSID)ssj0000315664 035 $a(PQKBManifestationID)11211609 035 $a(PQKBTitleCode)TC0000315664 035 $a(PQKBWorkID)10264542 035 $a(PQKB)10831768 035 $a(MiAaPQ)EBC6283451 035 $a(MiAaPQ)EBC4976043 035 $a(Au-PeEL)EBL4976043 035 $a(CaONFJC)MIL140212 035 $a(OCoLC)1024261838 035 $a(PPN)123090938 035 $a(EXLCZ)991000000000231910 100 $a20100806d2005 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAbstract Harmonic Analysis of Continuous Wavelet Transforms$b[electronic resource] /$fby Hartmut Führ 205 $a1st ed. 2005. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2005. 215 $a1 online resource (X, 193 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1863 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-24259-7 320 $aIncludes bibliographical references (pages [185]-190) and index. 327 $aIntroduction -- Wavelet Transforms and Group Representations -- The Plancherel Transform for Locally Compact Groups -- Plancherel Inversion and Wavelet Transforms -- Admissible Vectors for Group Extension -- Sampling Theorems for the Heisenberg Group -- References -- Index. 330 $aThis volume contains a systematic discussion of wavelet-type inversion formulae based on group representations, and their close connection to the Plancherel formula for locally compact groups. The connection is demonstrated by the discussion of a toy example, and then employed for two purposes: Mathematically, it serves as a powerful tool, yielding existence results and criteria for inversion formulae which generalize many of the known results. Moreover, the connection provides the starting point for a ? reasonably self-contained ? exposition of Plancherel theory. Therefore, the book can also be read as a problem-driven introduction to the Plancherel formula. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1863 606 $aHarmonic analysis 606 $aFourier analysis 606 $aAbstract Harmonic Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12015 606 $aFourier Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12058 615 0$aHarmonic analysis. 615 0$aFourier analysis. 615 14$aAbstract Harmonic Analysis. 615 24$aFourier Analysis. 676 $a515.2433 700 $aFühr$b Hartmut$4aut$4http://id.loc.gov/vocabulary/relators/aut$0472490 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466473303316 996 $aAbstract harmonic analysis of continuous wavelet transforms$9230757 997 $aUNISA