LEADER 01928nam 2200517 450 001 996466418303316 005 20220701092112.0 010 $a3-030-84459-5 035 $a(MiAaPQ)EBC6846517 035 $a(Au-PeEL)EBL6846517 035 $a(CKB)20639668500041 035 $a(PPN)269154035 035 $a(EXLCZ)9920639668500041 100 $a20220302d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aArtificial intelligence, machine learning, and optimization tools for smart cities $edesigning for sustainability /$fPanos M. Pardalos, Stamatina Th. Rassia, Arsenios Tsokas, editors 210 1$aCham, Switzerland :$cSpringer,$d[2022] 210 4$d©2022 215 $a1 online resource (239 pages) 225 1 $aSpringer optimization and its applications ;$vVolume 186 311 08$aPrint version: Pardalos, Panos M. Artificial Intelligence, Machine Learning, and Optimization Tools for Smart Cities Cham : Springer International Publishing AG,c2022 9783030844585 410 0$aSpringer optimization and its applications ;$vVolume 186. 606 $aArtificial intelligence 606 $aCiutats intel·ligents$2thub 606 $aInnovacions tecnològiques$2thub 606 $aIntel·ligència artificial$2thub 608 $aLlibres electrònics$2thub 615 0$aArtificial intelligence. 615 7$aCiutats intel·ligents 615 7$aInnovacions tecnològiques 615 7$aIntel·ligència artificial 676 $a006.3 702 $aRassia$b Stamatina Th 702 $aPardalos$b Panos M. 702 $aTsokas$b Arsenios 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466418303316 996 $aArtificial intelligence, machine learning, and optimization tools for smart cities$92785939 997 $aUNISA LEADER 01895nam 2200529I 450 001 9910702657603321 005 20141029091445.0 035 $a(CKB)5470000002429612 035 $a(OCoLC)893974916 035 $a(EXLCZ)995470000002429612 100 $a20141029j201308 ua 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 12$aA new method for analyzing near-field faraday probe data in hall thrusters /$fWensheng Huang [and four others] 210 1$aCleveland, Ohio :$cNational Aeronautics and Space Administration, Glenn Research Center,$dAugust 2013. 215 $a1 online resource (22 pages) $ccolor illustrations 225 1 $aNASA/TM ;$v2013-216567 300 $aTitle from title screen (viewed Oct. 27, 2014). 300 $a"August 2013." 300 $a"Prepared for the 49th Joint Propulsion Conference and Exhibit cosponsored by AIAA, ASME, SAE, and ASEE San Jose, California, July 14-17, 2013." 300 $a"AIAA-2013-4118." 320 $aIncludes bibliographical references (pages 21-22). 606 $aHall thrusters$2nasat 606 $aElectric propulsion$2nasat 606 $aNear fields$2nasat 606 $aElectrostatic probes$2nasat 606 $aData processing$2nasat 606 $aIteration$2nasat 606 $aGround tests$2nasat 615 7$aHall thrusters. 615 7$aElectric propulsion. 615 7$aNear fields. 615 7$aElectrostatic probes. 615 7$aData processing. 615 7$aIteration. 615 7$aGround tests. 700 $aHuang$b Wensheng$01419788 712 02$aNASA Glenn Research Center, 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910702657603321 996 $aA new method for analyzing near-field faraday probe data in hall thrusters$93549585 997 $aUNINA