LEADER 02777nam 2200553 450 001 996466400403316 005 20230421142549.0 010 $a3-030-67111-9 024 7 $a10.1007/978-3-030-67111-2 035 $a(CKB)4100000011954025 035 $a(DE-He213)978-3-030-67111-2 035 $a(MiAaPQ)EBC6640050 035 $a(Au-PeEL)EBL6640050 035 $a(OCoLC)1256541830 035 $a(PPN)258876735 035 $a(EXLCZ)994100000011954025 100 $a20220202d2021 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNon-local cell adhesion models $esymmetries and bifurcations in 1-D /$fAndreas Buttenscho?n, Thomas Hillen 205 $a1st ed. 2021. 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$d©2021 215 $a1 online resource (VIII, 152 p. 35 illus., 15 illus. in color.) 225 1 $aCMS/CAIMS Books in Mathematics 311 $a3-030-67110-0 327 $aIntroduction -- Preliminaries -- The Periodic Problem -- Basic Properties -- Local Bifurcation -- Global Bifurcation -- Non-local Equations with Boundary Conditions -- No-flux Boundary Conditions -- Discussion and future directions. 330 $aThis monograph considers the mathematical modeling of cellular adhesion, a key interaction force in cell biology. While deeply grounded in the biological application of cell adhesion and tissue formation, this monograph focuses on the mathematical analysis of non-local adhesion models. The novel aspect is the non-local term (an integral operator), which accounts for forces generated by long ranged cell interactions. The analysis of non-local models has started only recently, and it has become a vibrant area of applied mathematics. This monograph contributes a systematic analysis of steady states and their bifurcation structure, combining global bifurcation results pioneered by Rabinowitz, equivariant bifurcation theory, and the symmetries of the non-local term. These methods allow readers to analyze and understand cell adhesion on a deep level. 410 0$aCMS/CAIMS books in mathematics. 606 $aCell adhesion$xMathematical models 606 $aInteracció cel·lular$2thub 606 $aModels matemàtics$2thub 608 $aLlibres electrònics$2thub 615 0$aCell adhesion$xMathematical models. 615 7$aInteracció cel·lular 615 7$aModels matemàtics 676 $a574.87 700 $aButtenscho?n$b Andreas$0850499 702 $aHillen$b Thomas 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466400403316 996 $aNon-Local Cell Adhesion Models$91898863 997 $aUNISA