LEADER 04158nam 22008295 450 001 996466385403316 005 20230617035156.0 010 $a3-540-45096-3 024 7 $a10.1007/b10047 035 $a(CKB)1000000000233129 035 $a(SSID)ssj0000321237 035 $a(PQKBManifestationID)11255494 035 $a(PQKBTitleCode)TC0000321237 035 $a(PQKBWorkID)10262862 035 $a(PQKB)10326484 035 $a(DE-He213)978-3-540-45096-2 035 $a(MiAaPQ)EBC6283688 035 $a(MiAaPQ)EBC5585127 035 $a(Au-PeEL)EBL5585127 035 $a(OCoLC)54021059 035 $a(EXLCZ)991000000000233129 100 $a20150519d2003 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aAlmost Ring Theory$b[electronic resource] /$fby Ofer Gabber, Lorenzo Ramero 205 $a1st ed. 2003. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2003. 215 $a1 online resource (VI, 318 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1800 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-40594-1 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Homological Theory -- Almost Ring Theory -- Fine Study of Almost Projective Modules -- Henselian Pairs -- Valuation Theory -- Analytic Geometry -- Appendix -- References -- Index. 330 $aThis book develops thorough and complete foundations for the method of almost etale extensions, which is at the basis of Faltings' approach to p-adic Hodge theory. The central notion is that of an "almost ring". Almost rings are the commutative unitary monoids in a tensor category obtained as a quotient V-Mod/S of the category V-Mod of modules over a fixed ring V; the subcategory S consists of all modules annihilated by a fixed ideal m of V, satisfying certain natural conditions. The reader is assumed to be familiar with general categorical notions, some basic commutative algebra and some advanced homological algebra (derived categories, simplicial methods). Apart from these general prerequisites, the text is as self-contained as possible. One novel feature of the book - compared with Faltings' earlier treatment - is the systematic exploitation of the cotangent complex, especially for the study of deformations of almost algebras. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1800 606 $aAlgebra 606 $aCommutative algebra 606 $aCommutative rings 606 $aAlgebraic geometry 606 $aCategory theory (Mathematics) 606 $aHomological algebra 606 $aField theory (Physics) 606 $aAlgebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11000 606 $aCommutative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11043 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 606 $aCategory Theory, Homological Algebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11035 606 $aField Theory and Polynomials$3https://scigraph.springernature.com/ontologies/product-market-codes/M11051 615 0$aAlgebra. 615 0$aCommutative algebra. 615 0$aCommutative rings. 615 0$aAlgebraic geometry. 615 0$aCategory theory (Mathematics). 615 0$aHomological algebra. 615 0$aField theory (Physics). 615 14$aAlgebra. 615 24$aCommutative Rings and Algebras. 615 24$aAlgebraic Geometry. 615 24$aCategory Theory, Homological Algebra. 615 24$aField Theory and Polynomials. 676 $a510 700 $aGabber$b Ofer$4aut$4http://id.loc.gov/vocabulary/relators/aut$0149498 702 $aRamero$b Lorenzo$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466385403316 996 $aAlmost Ring Theory$92543722 997 $aUNISA