LEADER 02726nam 2200589 450 001 996466375303316 005 20220304101253.0 010 $a3-540-48295-4 024 7 $a10.1007/BFb0073448 035 $a(CKB)1000000000437168 035 $a(SSID)ssj0000324628 035 $a(PQKBManifestationID)12079261 035 $a(PQKBTitleCode)TC0000324628 035 $a(PQKBWorkID)10313236 035 $a(PQKB)11436459 035 $a(DE-He213)978-3-540-48295-6 035 $a(MiAaPQ)EBC5610797 035 $a(Au-PeEL)EBL5610797 035 $a(OCoLC)1078996415 035 $a(MiAaPQ)EBC6842588 035 $a(Au-PeEL)EBL6842588 035 $a(OCoLC)793079348 035 $a(PPN)155197622 035 $a(EXLCZ)991000000000437168 100 $a20220304d1994 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aMartingale Hardy spaces and their applications in Fourier analysis /$fFerenc Weisz 205 $a1st ed. 1994. 210 1$aBerlin :$cSpringer-Verlag,$d[1994] 210 4$dİ1994 215 $a1 online resource (VIII, 224 p.) 225 1 $aLecture notes in mathematics ;$v1568 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-57623-1 327 $aPreliminaries and notations -- One-parameter Martingale Hardy spaces -- Two-Parameter Martingale Hardy spaces -- Tree martingales -- Real interpolation -- Inequalities for Vilenkin-fourier coefficients. 330 $aThis book deals with the theory of one- and two-parameter martingale Hardy spaces and their use in Fourier analysis, and gives a summary of the latest results in this field. A method that can be applied for both one- and two-parameter cases, the so-called atomic decomposition method, is improved and provides a new and common construction of the theory of one- and two-parameter martingale Hardy spaces. A new proof of Carleson's convergence result using martingale methods for Fourier series is given with martingale methods. The book is accessible to readers familiar with the fundamentals of probability theory and analysis. It is intended for researchers and graduate students interested in martingale theory, Fourier analysis and in the relation between them. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1568. 606 $aMartingales (Mathematics) 615 0$aMartingales (Mathematics) 676 $a519.287 700 $aWeisz$b Ferenc$f1964-$060660 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466375303316 996 $aMartingale Hardy spaces and their applications in Fourier analysis$978727 997 $aUNISA