LEADER 02791oam 2200601 450 001 996466374703316 005 20210715094233.0 010 $a3-540-48208-3 024 7 $a10.1007/978-3-540-48208-6 035 $a(CKB)1000000000437166 035 $a(SSID)ssj0000322636 035 $a(PQKBManifestationID)12099108 035 $a(PQKBTitleCode)TC0000322636 035 $a(PQKBWorkID)10286942 035 $a(PQKB)10968126 035 $a(DE-He213)978-3-540-48208-6 035 $a(MiAaPQ)EBC3088027 035 $a(MiAaPQ)EBC6485895 035 $a(PPN)155218638 035 $a(EXLCZ)991000000000437166 100 $a20210715d1993 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 00$aDiophantine approximation and abelian varieties /$fB. Edixhoven, J. H. Evertse, editors 205 $a1st ed. 1993. 210 1$aBerlin ;$aHeidelberg :$cSpringer Verlag,$d[1993] 210 4$d©1993 215 $a1 online resource (XIV, 130 p.) 225 1 $aLecture Notes in Mathematics ;$vVolume 1566 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-57528-6 327 $aDiophantine Equations and Approximation -- Diophantine Approximation and its Applications -- Roth?s Theorem -- The Subspace Theorem of W.M. Schmidt -- Heights on Abelian Varieties -- D. Mumford?s ?A Remark on Mordell?s Conjecture? -- Ample Line Bundles and Intersection Theory -- The Product Theorem -- Geometric Part of Faltings?s Proof -- Faltings?s Version of Siegel?s Lemma -- Arithmetic Part of Faltings?s Proof -- Points of Degree d on Curves over Number Fields -- ?The? General Case of S. Lang?s Conjecture (after Faltings). 330 $aThe 13 chapters of this book centre around the proof of Theorem 1 of Faltings' paper "Diophantine approximation on abelian varieties", Ann. Math.133 (1991) and together give an approach to the proof that is accessible to Ph.D-level students in number theory and algebraic geometry. Each chapter is based on an instructional lecture given by its author ata special conference for graduate students, on the topic of Faltings' paper. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$vVolume 1566. 606 $aDiophantine approximation$vCongresses 606 $aAbelian varieties$vCongresses 615 0$aDiophantine approximation 615 0$aAbelian varieties 676 $a512.74 686 $a11Jxx$2msc 686 $a14Kxx$2msc 702 $aEdixhoven$b B. 702 $aEvertse$b J. H. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bUtOrBLW 906 $aBOOK 912 $a996466374703316 996 $aDiophantine approximation and abelian varieties$9262397 997 $aUNISA LEADER 01122nam a22003135i 4500 001 991002233409707536 007 cr nn 008mamaa 008 121227s1989 gw | s |||| 0|eng d 020 $a9783540469032 035 $ab14142028-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a515$223 084 $aAMS 46L10 084 $aAMS 46L35 100 1 $aWright, Steve$0441712 245 10$aUniqueness of the injective III1 factor$h[e-book] /$cby Steve Wright 260 $aBerlin :$bSpringer,$c1989 300 $a1 online resource (iii, 108 p.) 440 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1413 650 0$aMathematics 650 0$aGlobal analysis (Mathematics) 650 0$aMathematical physics 773 0 $aSpringer eBooks 856 40$uhttp://dx.doi.org/10.1007/BFb0090178$zAn electronic book accessible through the World Wide Web 907 $a.b14142028$b03-03-22$c05-09-13 912 $a991002233409707536 996 $aUniqueness of the injective III1 factor$9262317 997 $aUNISALENTO 998 $ale013$b05-09-13$cm$d@ $e-$feng$ggw $h0$i0