LEADER 00912nam0-2200337---450- 001 990008277120403321 005 20060412113433.0 010 $a0-19-925563-6 035 $a000827712 035 $aFED01000827712 035 $a(Aleph)000827712FED01 035 $a000827712 100 $a20060217d2005----km-y0itay50------ba 101 0 $aeng 102 $aGB 105 $a--------001y- 200 1 $aEvolution$ean introduction$fStephen C. Stearns, Rolf F. Hockstra 205 $a2nd ed. 210 $aOxford$cOxford University Press$dc2005 215 $aXX, 575 p.$d25 cm 610 0 $aEvoluzione 676 $a575$v20$zita 700 1$aStearns,$bStephen C.$0282273 701 1$aHockstra,$bRolf F.$0424221 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008277120403321 952 $a60 575 B 33$b10226$fFAGBC 959 $aFAGBC 996 $aEvolution$9741789 997 $aUNINA LEADER 02974nam 2200697 450 001 996466373503316 005 20211012154015.0 010 $a3-540-49041-8 024 7 $a10.1007/BFb0074039 035 $a(CKB)1000000000437193 035 $a(SSID)ssj0000323056 035 $a(PQKBManifestationID)12064851 035 $a(PQKBTitleCode)TC0000323056 035 $a(PQKBWorkID)10296287 035 $a(PQKB)10336414 035 $a(DE-He213)978-3-540-49041-8 035 $a(MiAaPQ)EBC5585024 035 $a(MiAaPQ)EBC6523279 035 $a(Au-PeEL)EBL5585024 035 $a(OCoLC)1066197258 035 $a(Au-PeEL)EBL6523279 035 $a(OCoLC)1058160511 035 $a(PPN)155168290 035 $a(EXLCZ)991000000000437193 100 $a20211012d1994 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aExplicit formulas for regularized products and series /$fJay Jorgenson & Serge Lang, Dorian Goldfeld 205 $a1st ed. 1994. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[1994] 210 4$dİ1994 215 $a1 online resource (VIII, 160 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1593 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-58673-3 320 $aIncludes bibliographical references and index. 330 $aThe theory of explicit formulas for regularized products and series forms a natural continuation of the analytic theory developed in LNM 1564. These explicit formulas can be used to describe the quantitative behavior of various objects in analytic number theory and spectral theory. The present book deals with other applications arising from Gaussian test functions, leading to theta inversion formulas and corresponding new types of zeta functions which are Gaussian transforms of theta series rather than Mellin transforms, and satisfy additive functional equations. Their wide range of applications includes the spectral theory of a broad class of manifolds and also the theory of zeta functions in number theory and representation theory. Here the hyperbolic 3-manifolds are given as a significant example. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1593 606 $aSpectral theory (Mathematics) 606 $aSequences (Mathematics) 606 $aNumber theory 606 $aFunctions, Zeta 615 0$aSpectral theory (Mathematics) 615 0$aSequences (Mathematics) 615 0$aNumber theory. 615 0$aFunctions, Zeta. 676 $a512/.7 686 $a11M36$2msc 700 $aJorgenson$b Jay$060132 702 $aGoldfeld$b D$g(Dorian), 702 $aLang$b Serge$f1927-2005, 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466373503316 996 $aExplicit formulas for regularized products and series$92831402 997 $aUNISA