LEADER 04768nam 22007695 450 001 996466139103316 005 20240327180726.0 010 $a3-540-44661-3 024 7 $a10.1007/3-540-60164-3 035 $a(CKB)1000000000234314 035 $a(SSID)ssj0000321777 035 $a(PQKBManifestationID)11255102 035 $a(PQKBTitleCode)TC0000321777 035 $a(PQKBWorkID)10280213 035 $a(PQKB)10163782 035 $a(DE-He213)978-3-540-44661-3 035 $a(PPN)155191322 035 $a(EXLCZ)991000000000234314 100 $a20121227d1995 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aCategory Theory and Computer Science$b[electronic resource] $e6th International Conference, CTCS '95, Cambridge, United Kingdom, August 7 - 11, 1995. Proceedings /$fedited by David Pitt, David E. Rydeheard, Peter Johnstone 205 $a1st ed. 1995. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1995. 215 $a1 online resource (IX, 259 p.) 225 1 $aLecture Notes in Computer Science,$x0302-9743 ;$v953 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-60164-3 327 $aControl structures: A model of interaction -- Convenient category of processes and simulations I: Modulo strong bisimilarity -- Dualities between nets and automata induced by schizophrenic objects -- Relational set theory -- Proof of a S.Mac Lane conjecture (extended abstract) -- Effective applicative structures -- The S-replete construction -- The convex powerdomain in a category of posets realized by cpos -- Lifting as a KZ-doctrine -- Categorical fixed point calculus -- A category-theoretic treatment of a parallel algol-like language -- Categorical reconstruction of a reduction free normalization proof -- Decomposing typed lambda calculus into a couple of categorical programming languages -- V-comprehensions and P space -- A proposed categorical semantics for ML modules. 330 $aThis book presents the proceedings of the Sixth International Conference on Category Theory and Computer Science, CTCS '95, held in Cambridge, UK in August 1995. The 15 revised full papers included in the volume document the exploitation of links between logic and category theory leading to a solid basis for much of the understanding of the semantics of computation. Notable amongst other advances is the introduction of linear logic and other substructural logics, providing a new approach to proof theory. Further aspects covered are semantics of lambda calculi and type theories, program specification and development, and domain theory. 410 0$aLecture Notes in Computer Science,$x0302-9743 ;$v953 606 $aComputer science?Mathematics 606 $aComputer logic 606 $aMathematical logic 606 $aSoftware engineering 606 $aProgramming languages (Electronic computers) 606 $aK-theory 606 $aMathematics of Computing$3https://scigraph.springernature.com/ontologies/product-market-codes/I17001 606 $aLogics and Meanings of Programs$3https://scigraph.springernature.com/ontologies/product-market-codes/I1603X 606 $aMathematical Logic and Formal Languages$3https://scigraph.springernature.com/ontologies/product-market-codes/I16048 606 $aSoftware Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/I14029 606 $aProgramming Languages, Compilers, Interpreters$3https://scigraph.springernature.com/ontologies/product-market-codes/I14037 606 $aK-Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M11086 615 0$aComputer science?Mathematics. 615 0$aComputer logic. 615 0$aMathematical logic. 615 0$aSoftware engineering. 615 0$aProgramming languages (Electronic computers). 615 0$aK-theory. 615 14$aMathematics of Computing. 615 24$aLogics and Meanings of Programs. 615 24$aMathematical Logic and Formal Languages. 615 24$aSoftware Engineering. 615 24$aProgramming Languages, Compilers, Interpreters. 615 24$aK-Theory. 676 $a005.13/1 702 $aPitt$b David$g(David H.).$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aRydeheard$b David E$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aJohnstone$b Peter$4edt$4http://id.loc.gov/vocabulary/relators/edt 712 12$aBiennial Conference on Category Theory and Computer Science$d(6th :$f1995 :$eCambridge, England) 906 $aBOOK 912 $a996466139103316 996 $aCategory theory and computer science$9382680 997 $aUNISA