LEADER 04860nam 22007455 450 001 996466130003316 005 20200703041101.0 010 $a3-540-48791-3 024 7 $a10.1007/3-540-58431-5 035 $a(CKB)1000000000234176 035 $a(SSID)ssj0000321089 035 $a(PQKBManifestationID)11238198 035 $a(PQKBTitleCode)TC0000321089 035 $a(PQKBWorkID)10259799 035 $a(PQKB)10475126 035 $a(DE-He213)978-3-540-48791-3 035 $a(PPN)155174819 035 $a(EXLCZ)991000000000234176 100 $a20121227d1994 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aAlgebraic and Logic Programming$b[electronic resource] $e4th International Conference, ALP '94, Madrid, Spain, September 14-16, 1994. Proceedings /$fedited by Giorgio Levi, Mario Rodriguez-Artalejo 205 $a1st ed. 1994. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1994. 215 $a1 online resource (X, 314 p.) 225 1 $aLecture Notes in Computer Science,$x0302-9743 ;$v850 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-58431-5 327 $aConcurrent constraint programming -- Specifications using multiple-conclusion logic programs -- Viewing a program transformation system at work -- Proving implications by algebraic approximation -- Sufficient completeness and parameterized proofs by induction -- Proving behavioural theorems with standard first-order logic -- How to realize LSE narrowing -- Compositional analysis for equational Horn programs -- Equation solving in projective planes and planar ternary rings -- From eventual to atomic and locally atomic CC programs: A concurrent semantics -- Concurrent logic programming as uniform linear proofs -- Three-valued completion for abductive logic programs -- A sequential reduction strategy -- On modularity of termination and confluence properties of conditional rewrite systems -- Syntactical analysis of total termination -- Logic programs as term rewriting systems -- Higher-order minimal function graphs -- Reasoning about layered, wildcard and product patterns -- Preserving universal termination through unfold/fold -- A logic for variable aliasing in logic programs. 330 $aThis volume constitutes the proceedings of the Fourth International Conference on Algebraic and Logic Programming (ALP '94), held in Madrid, Spain in September 1994. Like the predecessor conferences in this series, ALP '94 succeeded in strengthening the cross-fertilization between algebraic techniques and logic programming. Besides abstracts of three invited talks, the volume contains 17 full revised papers selected from 41 submissions; the papers are organized into sections on theorem proving, narrowing, logic programming, term rewriting, and higher-order programming. 410 0$aLecture Notes in Computer Science,$x0302-9743 ;$v850 606 $aSoftware engineering 606 $aComputers 606 $aProgramming languages (Electronic computers) 606 $aComputer logic 606 $aMathematical logic 606 $aArtificial intelligence 606 $aSoftware Engineering/Programming and Operating Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/I14002 606 $aTheory of Computation$3https://scigraph.springernature.com/ontologies/product-market-codes/I16005 606 $aProgramming Languages, Compilers, Interpreters$3https://scigraph.springernature.com/ontologies/product-market-codes/I14037 606 $aLogics and Meanings of Programs$3https://scigraph.springernature.com/ontologies/product-market-codes/I1603X 606 $aMathematical Logic and Formal Languages$3https://scigraph.springernature.com/ontologies/product-market-codes/I16048 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 615 0$aSoftware engineering. 615 0$aComputers. 615 0$aProgramming languages (Electronic computers). 615 0$aComputer logic. 615 0$aMathematical logic. 615 0$aArtificial intelligence. 615 14$aSoftware Engineering/Programming and Operating Systems. 615 24$aTheory of Computation. 615 24$aProgramming Languages, Compilers, Interpreters. 615 24$aLogics and Meanings of Programs. 615 24$aMathematical Logic and Formal Languages. 615 24$aArtificial Intelligence. 676 $a005.1 702 $aLevi$b Giorgio$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aRodriguez-Artalejo$b Mario$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a996466130003316 996 $aAlgebraic and logic programming$91492537 997 $aUNISA LEADER 05308nam 2200637Ia 450 001 9910830935103321 005 20230829005417.0 010 $a1-280-72286-X 010 $a9786610722860 010 $a3-527-60878-8 010 $a3-527-60859-1 035 $a(CKB)1000000000376188 035 $a(EBL)481747 035 $a(OCoLC)78205030 035 $a(SSID)ssj0000201010 035 $a(PQKBManifestationID)11184271 035 $a(PQKBTitleCode)TC0000201010 035 $a(PQKBWorkID)10232319 035 $a(PQKB)10805776 035 $a(MiAaPQ)EBC481747 035 $a(EXLCZ)991000000000376188 100 $a20060804d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aMembrane technology in the chemical industry$b[electronic resource] /$fedited by Suzana Pereira Nunes and Klaus-Vktor Peinemann 205 $a2nd Rev. and extended ed. 210 $aWeinheim $cWiley-VCH$d2006 215 $a1 online resource (356 p.) 300 $aPrevious ed.: 2001. 311 $a3-527-31316-8 320 $aIncludes bibliographical references and index. 327 $aMembrane Technology; Contents; Preface; List of Contributors; Part I Membrane Materials and Membrane Preparation; 1 Introduction; 2 Membrane Market; 3 Membrane Preparation; 3.1 Phase Inversion; 4 Presently Available Membranes for Liquid Separation; 4.1 Membranes for Reverse Osmosis; 4.2 Membranes for Nanofiltration; 4.2.1 Solvent-resistant Membranes for Nanofiltration; 4.2.2 NF Membranes Stable in Extreme pH Conditions; 4.3 Membranes for Ultrafiltration; 4.3.1 Polysulfone and Polyethersulfone; 4.3.2 Poly(vinylidene fluoride); 4.3.3 Polyetherimide; 4.3.4 Polyacrylonitrile; 4.3.5 Cellulose 327 $a4.3.6 Solvent-resistant Membranes for Ultrafiltration4.4 Membranes for Microfiltration; 4.4.1 Polypropylene and Polyethylene; 4.4.2 Poly(tetrafluorethylene); 4.4.3 Polycarbonate and Poly(ethylene terephthalate); 5 Surface Modification of Membranes; 5.1 Chemical Oxidation; 5.2 Plasma Treatment; 5.3 Classical Organic Reactions; 5.4 Polymer Grafting; 6 Membranes for Fuel Cells; 6.1 Perfluorinated Membranes; 6.2 Nonfluorinated Membranes; 6.3 Polymer Membranes for High Temperatures; 6.4 Organic-Inorganic Membranes for Fuel Cells; 7 Gas Separation with Membranes; 7.1 Introduction 327 $a7.2 Materials and Transport Mechanisms7.2.1 Organic Polymers; 7.2.2 Background; 7.2.3 Polymers for Commercial Gas-separation Membranes; 7.2.4 Ultrahigh Free Volume Polymers; 7.2.5 Inorganic Materials for Gas-separation Membranes; 7.2.6 Carbon Membranes; 7.2.7 Perovskite-type Oxide Membranes for Air Separation; 7.2.8 Mixed-matrix Membranes; 7.3 Basic Process Design; Acknowledgments; References; Part II Current Application and Perspectives; 1 The Separation of Organic Vapors from Gas Streams by Means of Membranes; Summary; 1.1 Introduction; 1.2 Historical Background 327 $a1.3 Membranes for Organic Vapor Separation1.3.1 Principles; 1.3.2 Selectivity; 1.3.3 Temperature and Pressure; 1.3.4 Membrane Modules; 1.4 Applications; 1.4.1 Design Criteria; 1.4.2 Off-gas and Process Gas Treatment; 1.4.2.1 Gasoline Vapor Recovery; 1.4.2.2 Polyolefin Production Processes; 1.5 Applications at the Threshold of Commercialization; 1.5.1 Emission Control at Petrol Stations; 1.5.2 Natural Gas Treatment; 1.5.3 Hydrogen/Hydrocarbon Separation; 1.6 Conclusions and Outlook; References; 2 Gas-separation Membrane Applications; 2.1 Introduction; 2.2 Membrane Application Development 327 $a2.2.1 Membrane Selection2.2.2 Membrane Form; 2.2.3 Membrane Module Geometry; 2.2.4 Compatible Sealing Materials; 2.2.5 Module Manufacture; 2.2.6 Pilot or Field Demonstration; 2.2.7 Process Design; 2.2.8 Membrane System; 2.2.9 Beta Site; 2.2.10 Cost/Performance; 2.3 Commercial Gas-separation Membrane Applications; 2.3.1 Hydrogen Separations; 2.3.2 Helium Separations; 2.3.3 Nitrogen Generation; 2.3.4 Acid Gas-Separations; 2.3.5 Gas Dehydration; 2.4 Developing Membrane Applications; 2.4.1 Oxygen and Oxygen-enriched Air; 2.4.2 Nitrogen Rejection from Natural Gas; 2.4.3 Nitrogen-enriched Air (NEA) 327 $aReferences 330 $aMembrane Technology - a clean and energy saving alternative to traditional/conventional processes.Developed from a useful laboratory technique to a commercial separation technology, today it has widespread and rapidly expanding use in the chemical industry. It has established applications in areas such as hydrogen separation and recovery of organic vapors from process gas streams, and selective transport of organic solvents, and it is opening new perspectives for catalytic conversion in membrane reactors. Membrane technology provides a unique solution for industrial waste treatment and 606 $aMembrane filters 606 $aMembrane separation 615 0$aMembrane filters. 615 0$aMembrane separation. 676 $a660.2842 676 $a660.28424 701 $aNunes$b S. P$g(Suzana Pereira)$0855337 701 $aPeinemann$b K. V$g(Klaus-Viktor)$0855336 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830935103321 996 $aMembrane technology in the chemical industry$93982529 997 $aUNINA