LEADER 03321nam 22006375 450 001 996466055303316 005 20200705013935.0 010 $a3-540-48127-3 024 7 $a10.1007/BFb0019384 035 $a(CKB)1000000000234047 035 $a(SSID)ssj0000321433 035 $a(PQKBManifestationID)11937827 035 $a(PQKBTitleCode)TC0000321433 035 $a(PQKBWorkID)10279513 035 $a(PQKB)11625688 035 $a(DE-He213)978-3-540-48127-0 035 $a(PPN)155215779 035 $a(EXLCZ)991000000000234047 100 $a20121227d1993 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aArtificial Perception and Music Recognition$b[electronic resource] /$fby Andranick S. Tanguiane 205 $a1st ed. 1993. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1993. 215 $a1 online resource (XV, 210 p.) 225 1 $aLecture Notes in Artificial Intelligence ;$v746 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-57394-1 327 $aCorrelativity of perception -- Substantiating the model -- Implementing the model -- Experiments on chord recognition -- Applications to rhythm recognition -- Applications to music theory -- General discussion -- Conclusions. 330 $aThis monograph presents the author's studies in music recognition aimed at developing a computer system for automatic notation of performed music. The performance of such a system is supposed to be similar to that of speech recognition systems: acoustical data at the input and music scoreprinting at the output. The approach to pattern recognition employed is thatof artificial perception, based on self-organizing input data in order to segregate patterns before their identification by artificial intelligencemethods. The special merit of the approach is that it finds optimal representations of data instead of directly recognizing patterns. 410 0$aLecture Notes in Artificial Intelligence ;$v746 606 $aPattern recognition 606 $aArtificial intelligence 606 $aData structures (Computer science) 606 $aElectrical engineering 606 $aPattern Recognition$3https://scigraph.springernature.com/ontologies/product-market-codes/I2203X 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 606 $aData Storage Representation$3https://scigraph.springernature.com/ontologies/product-market-codes/I15025 606 $aCommunications Engineering, Networks$3https://scigraph.springernature.com/ontologies/product-market-codes/T24035 615 0$aPattern recognition. 615 0$aArtificial intelligence. 615 0$aData structures (Computer science). 615 0$aElectrical engineering. 615 14$aPattern Recognition. 615 24$aArtificial Intelligence. 615 24$aData Storage Representation. 615 24$aCommunications Engineering, Networks. 676 $a006.4/5 700 $aTanguiane$b Andranick S$4aut$4http://id.loc.gov/vocabulary/relators/aut$0613386 906 $aBOOK 912 $a996466055303316 996 $aArtificial perception and music recognition$91489514 997 $aUNISA LEADER 00992nam a2200265 i 4500 001 991001902659707536 005 20020507153558.0 008 991004s1974 it ||| | ita 035 $ab11580884-39ule_inst 035 $aLE02727126$9ExL 040 $aDip.to Studi Giuridici$bita 082 0 $a346.5 100 1 $aGiuffrè, Vincenzo$0352913 245 10$aDocumenti testamentari romani /$ca cura di Vincenzo Giuffre 260 $aMilano :$bA. Giuffré,$c1974 300 $a58 p. ;$c25 cm. 490 0 $aTesti per esercitazioni, Universita degli studi di Camerino, Facolta di giurisprudenza. Sez. 2 ;$v3 650 4$aFonti 650 4$aTestamento$xDiritto romano$xFonti 907 $a.b11580884$b01-03-17$c02-07-02 912 $a991001902659707536 945 $aLE027 ARCHI F 6$g1$iLE027-4632$lle027$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i11788598$z02-07-02 996 $aDocumenti testamentari romani$9896036 997 $aUNISALENTO 998 $ale027$b01-01-99$cm$da $e-$fita$git $h0$i1