LEADER 05737nam 22007575 450 001 996466028803316 005 20220809233625.0 010 $a3-540-37898-7 024 7 $a10.1007/11826095 035 $a(CKB)1000000000283947 035 $a(SSID)ssj0000319259 035 $a(PQKBManifestationID)11256967 035 $a(PQKBTitleCode)TC0000319259 035 $a(PQKBWorkID)10338198 035 $a(PQKB)10421868 035 $a(DE-He213)978-3-540-37898-3 035 $a(MiAaPQ)EBC3068230 035 $a(PPN)123137683 035 $a(EXLCZ)991000000000283947 100 $a20101025d2006 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aOMDoc -- An Open Markup Format for Mathematical Documents [version 1.2]$b[electronic resource] $eForeword by Alan Bundy /$fby Michael Kohlhase 205 $a1st ed. 2006. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2006. 215 $a1 online resource (XIX, 428 p.) 225 1 $aLecture Notes in Artificial Intelligence ;$v4180 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-37897-9 320 $aIncludes bibliographical references and index. 327 $aSetting the Stage for Open Mathematical Documents -- Setting the Stage for Open Mathematical Documents -- Document Markup for the Web -- Markup for Mathematical Knowledge -- OMDoc: Open Mathematical Documents -- An OMDoc Primer -- An OMDoc Primer -- Mathematical Textbooks and Articles -- OpenMath Content Dictionaries -- Structured and Parametrized Theories -- A Development Graph for Elementary Algebra -- Courseware and the Narrative/Content Distinction -- Communication with and Between Mathematical Software Systems -- The OMDoc Document Format -- The OMDoc Document Format -- OMDoc as a Modular Format -- Document Infrastructure (Module DOC) -- Metadata (Modules DC and CC) -- Mathematical Objects (Module MOBJ) -- Mathematical Text (Modules MTXT and RT) -- Mathematical Statements (Module ST) -- Abstract Data Types (Module ADT) -- Representing Proofs (Module PF) -- Complex Theories (Modules CTH and DG) -- Notation and Presentation (Module PRES) -- Auxiliary Elements (Module EXT) -- Exercises (Module QUIZ) -- Document Models for OMDoc -- OMDoc Applications, Tools, and Projects -- OMDoc Applications, Tools, and Projects -- OMDoc Resources -- Validating OMDoc Documents -- Transforming OMDoc by XSLT Style Sheets -- OMDoc Applications and Projects -- Changes to the Specification -- Quick-Reference Table to the OMDoc Elements -- Quick-Reference Table to the OMDoc Attributes -- The RelaxNG Schema for OMDoc -- The RelaxNG Schemata for Mathematical Objects. 330 $aComputers are changing the way we think. Of course, nearly all desk-workers have access to computers and use them to email their colleagues, search the Web for information and prepare documents. But I?m not referring to that. I mean that people have begun to think about what they do in computational terms and to exploit the power of computers to do things that would previously have been unimaginable. This observation is especially true of mathematicians. Arithmetic computation is one of the roots of mathematics. Since Euclid?s algorithm for finding greatest common divisors, many seminal mathematical contributions have consisted of new procedures. But powerful computer graphics have now enabled mathematicians to envisage the behaviour of these procedures and, thereby, gain new insights, make new conjectures and explore new avenues of research. Think of the explosive interest in fractals, for instance. This has been driven primarily by our new-found ability rapidly to visualize fractal shapes, such as the Mandelbrot set. Taking advantage of these new opportunities has required the learning of new skills, such as using computer algebra and graphics packages. 410 0$aLecture Notes in Artificial Intelligence ;$v4180 606 $aArtificial intelligence 606 $aComputer software 606 $aComputers 606 $aInformation storage and retrieval 606 $aMathematical logic 606 $aComputer science?Mathematics 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 606 $aMathematical Software$3https://scigraph.springernature.com/ontologies/product-market-codes/M14042 606 $aTheory of Computation$3https://scigraph.springernature.com/ontologies/product-market-codes/I16005 606 $aInformation Storage and Retrieval$3https://scigraph.springernature.com/ontologies/product-market-codes/I18032 606 $aMathematical Logic and Formal Languages$3https://scigraph.springernature.com/ontologies/product-market-codes/I16048 606 $aSymbolic and Algebraic Manipulation$3https://scigraph.springernature.com/ontologies/product-market-codes/I17052 615 0$aArtificial intelligence. 615 0$aComputer software. 615 0$aComputers. 615 0$aInformation storage and retrieval. 615 0$aMathematical logic. 615 0$aComputer science?Mathematics. 615 14$aArtificial Intelligence. 615 24$aMathematical Software. 615 24$aTheory of Computation. 615 24$aInformation Storage and Retrieval. 615 24$aMathematical Logic and Formal Languages. 615 24$aSymbolic and Algebraic Manipulation. 676 $a006.3 700 $aKohlhase$b Michael$4aut$4http://id.loc.gov/vocabulary/relators/aut$0508819 906 $aBOOK 912 $a996466028803316 996 $aOMDoc – An Open Markup Format for Mathematical Documents$9772170 997 $aUNISA