LEADER 03736nam 22006375 450 001 996465949103316 005 20200629142222.0 010 $a3-540-48064-1 024 7 $a10.1007/BFb0103291 035 $a(CKB)1000000000548770 035 $a(SSID)ssj0000327256 035 $a(PQKBManifestationID)11232917 035 $a(PQKBTitleCode)TC0000327256 035 $a(PQKBWorkID)10298933 035 $a(PQKB)10710936 035 $a(DE-He213)978-3-540-48064-8 035 $a(PPN)155202669 035 $a(EXLCZ)991000000000548770 100 $a20121227d1999 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 12$aA Tight, Practical Integration of Relations and Functions$b[electronic resource] /$fby Harold Boley 205 $a1st ed. 1999. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1999. 215 $a1 online resource (XII, 176 p.) 225 1 $aLecture Notes in Artificial Intelligence ;$v1712 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-66644-3 327 $aAn overview of the relational-functional language RELFUN -- Extended logic-plus-functional programming -- A direct semantic characterization of RELFUN -- Finite domains and exclusions as first-class citizens -- Multiple-valued Horn clauses and their WAM compilation. 330 $aAs in other fields, in computer science certain objects of study can be synthesized from different basic elements, in different ways, and with different resulting stabilities. In subfields such as artificial intelligence, computational logic, and programming languages various relational and functional ingredients and techniques have been tried for the synthesis of declarative programs. This text considers the notions of relations, as found in logic programming or in relational databases, and of functions, as found in functional programming or in equational languages. We study a declarative integration which is tight, because it takes place right at the level of these notions, and which is still practical, because it preserves the advantages of the widely used relational and functional languages PROLOG and LISP. The resulting relational and functional language, RELFUN, is used here for exemplifying all integration principles. 410 0$aLecture Notes in Artificial Intelligence ;$v1712 606 $aArtificial intelligence 606 $aProgramming languages (Electronic computers) 606 $aMathematical logic 606 $aComputer logic 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 606 $aProgramming Languages, Compilers, Interpreters$3https://scigraph.springernature.com/ontologies/product-market-codes/I14037 606 $aMathematical Logic and Formal Languages$3https://scigraph.springernature.com/ontologies/product-market-codes/I16048 606 $aLogics and Meanings of Programs$3https://scigraph.springernature.com/ontologies/product-market-codes/I1603X 615 0$aArtificial intelligence. 615 0$aProgramming languages (Electronic computers). 615 0$aMathematical logic. 615 0$aComputer logic. 615 14$aArtificial Intelligence. 615 24$aProgramming Languages, Compilers, Interpreters. 615 24$aMathematical Logic and Formal Languages. 615 24$aLogics and Meanings of Programs. 676 $a005.74 700 $aBoley$b Harold$4aut$4http://id.loc.gov/vocabulary/relators/aut$0747095 906 $aBOOK 912 $a996465949103316 996 $aA Tight, Practical Integration of Relations and Functions$92262775 997 $aUNISA LEADER 07868nam 22007213 450 001 9911026076403321 005 20241120175023.0 010 $a9780750349116 010 $a0750349115 010 $a9780750349130 010 $a0750349131 010 $a9780750349109 010 $a0750349107 024 7 $a10.1088/978-0-7503-4911-6 035 $a(CKB)32323145500041 035 $a(MiAaPQ)EBC31501331 035 $a(Au-PeEL)EBL31501331 035 $a(CaBNVSL)thg00083953 035 $a(OCoLC)1441750175 035 $a(IOP)9780750349116 035 $a(EXLCZ)9932323145500041 100 $a20240625d2024 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNonlinear Ultrasonic Guided Waves 205 $a1st ed. 210 1$aBristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :$cIOP Publishing,$d[2024] 215 $a1 online resource (335 pages) 225 1 $aIOP Ebooks Series 300 $a"Version: 20240601"--Title page verso. 311 08$a9780750349093 311 08$a0750349093 320 $aIncludes bibliographical references. 327 $aIntro -- Acknowledgments -- Author biography -- Cliff J Lissenden -- Chapter Introduction -- 1.1 Motivation -- 1.2 Brief perspective on nonlinear ultrasonic guided waves -- 1.3 Approach -- 1.4 Content -- 1.5 Closure -- References -- Chapter Preliminaries -- 2.1 Notation -- 2.2 Continuum mechanics -- 2.2.1 Kinematics -- Example 2.2. Normal strains -- Example 2.3. Shear strain -- 2.2.2 Balance laws -- 2.2.3 Stress -- 2.2.4 Constitutive relations -- Example 2.4. Stress components decomposed into linear and nonlinear parts -- Example 2.5. Strain energy function for transversely isotropic material -- 2.3 Elastodynamics -- 2.3.1 Wave equation -- 2.3.2 Wave equation for isotropic materials -- 2.3.3 Attenuation -- 2.4 Closure -- References -- Chapter Nonlinear elastic waves -- 3.1 Bulk longitudinal waves -- Example 3.1. Longitudinal wave nonlinearity -- Example 3.2. Regular perturbation approach to the nonlinear longitudinal wave problem -- Example 3.3. Nonlinear longitudinal wave solution using the method of multiple scales -- Example 3.4. Determine ? in terms of Landau-Lifshitz TOECs for an isotropic material -- 3.2 Bulk shear waves -- Example 3.5. Shear wave third harmonic generation -- 3.3 Attenuation -- 3.4 Measurements of nonlinearity -- 3.4.1 Acoustoelasticity -- 3.4.2 Second harmonic generation -- 3.4.3 Wave mixing -- 3.4.4 Nonlinear resonant ultrasound spectroscopy (NRUS) -- 3.4.5 Vibro-acoustics -- 3.4.6 Dynamic acoustoelastic testing -- 3.5 Closure -- References -- Chapter Boundary value problem formulation -- 4.1 Linear BVPs -- 4.1.1 Free surfaces -- 4.1.2 Plates -- 4.1.3 Hollow cylinders -- 4.1.4 Arbitrary cross-sections -- 4.2 Nonlinear BVPs -- 4.2.1 Regular perturbation method -- 4.2.2 Wave interactions -- Example 4.1. Third order interactions -- 4.3 Closure -- References -- Chapter Ultrasonic guided waves-linear features. 327 $a5.1 Physical characteristics of waves -- 5.1.1 Phase velocity -- 5.1.2 Wavestructure -- 5.1.3 Group velocity -- Example 5.1. Group velocity calculation -- 5.1.4 Attenuation -- 5.2 Rayleigh waves -- 5.3 Waves in plates -- 5.3.1 Shear-horizontal (SH) waves -- 5.3.2 Lamb waves -- 5.3.3 Anisotropic plates -- 5.3.4 Finite-width plates -- 5.4 Hollow cylinder waves -- 5.5 Other types of guided waves -- 5.6 Closure -- References -- Chapter Nonlinear analysis of plates -- 6.1 Reciprocity -- 6.2 Orthogonality -- Example 6.1. Auld's real reciprocity relation -- Example 6.2. Orthogonality of SH waves -- Example 6.3. Orthogonality of Lamb waves -- 6.3 Completeness -- 6.4 Normal mode expansion -- 6.5 Perturbation approach -- 6.6 Internal resonance -- Example 6.4. Second harmonic generation of Lamb waves -- 6.7 Wave mixing -- 6.8 Closure -- References -- Chapter Internal resonance in plates -- 7.1 Power flow for self-interaction -- 7.1.1 Second order -- 7.1.2 Third order -- 7.2 Power flow for mutual interaction -- 7.2.1 Second order co-directional -- Example 7.1. Parity analysis of mutual interaction between SRL and ASH wavefields -- 7.2.2 Third order co-directional -- 7.3 Effect of directionality -- 7.4 Synchronism -- 7.4.1 Second order self-interaction -- 7.4.2 Third order self-interaction -- 7.5 Group velocity matching -- 7.5.1 Co-directional wave mixing -- 7.5.2 Counter-propagating wave mixing -- 7.5.3 Non-collinear wave mixing -- 7.6 Comments on hollow cylinders -- 7.7 Closure -- References -- Chapter Selecting primary waves -- 8.1 Self-interaction in plates -- 8.1.1 Seond harmonic generation -- 8.1.2 Third harmonic generation -- 8.1.3 Method of multiple scales -- 8.2 Mutual interaction in plates -- 8.2.1 Co-directional, ?=0° -- 8.2.2 Counter-propagating, ?=180° -- 8.2.3 Non-collinear, ??0° and ??180° -- 8.3 Hollow cylinders -- 8.4 Arbitrary cross-section. 327 $a8.5 Half-space -- 8.6 Closure -- References -- Chapter Finite amplitude pulse loading -- 9.1 Descriptors of nonlinearity -- 9.2 Experimental results from laser generation -- Example 9.1 Relationship between Rayleigh wave components -- 9.3 Modeling waveform evolution -- 9.4 Closure -- References -- Chapter Numerical simulations -- 10.1 Methods -- 10.2 Software tools -- 10.3 Sample problems -- 10.3.1 Reported in the literature -- 10.3.2 Lamb wave analyses using commercial software -- 10.4 Closure -- References -- Chapter Making measurements -- 11.1 Instrumentation -- 11.2 Generation -- 11.2.1 Transmitting transducers -- 11.2.2 Transmitting methods -- 11.3 Reception -- 11.3.1 Receiving transducers -- 11.3.2 Receiving methods -- 11.4 Signal processing -- 11.5 Closure -- References -- Chapter Highlights of experimental testing -- 12.1 Self-interaction -- 12.2 Mutual interaction -- 12.3 Quasi-Rayleigh waves -- 12.4 Closure -- References -- Chapter Perspective -- 13.1 Separation of material nonlinearity from measurement system nonlinearity -- 13.2 Link with the structural design that identifies hot spots to be monitored and a plan for inclusion of nonlinear ultrasonic guided waves in the operations management and maintenance planning -- 13.3 Standards for test methods that are broad enough to be applicable to the emerging needs for offline inspection and in-service monitoring -- 13.4 Define specifications needed to build monitoring systems into self-aware smart structures -- 13.5 Solid connection between nonlinear wave propagation characteristics and the material microstructure that dictates its strength and fracture properties -- References. 330 $aThe book sets the stage for nonlinear guided waves by introducing nonlinear wave propagation in 1D and expanding the mathematical treatment to guided waves. It considers self-interaction for harmonic generation and mutual interactions for wave mixing. It demonstrates the characteristics of nonlinear guided waves numerically and experimentally. 410 0$aIOP Ebooks Series 606 $aWave-motion, Theory of 606 $aNonlinear waves 606 $aOptical wave guides 606 $aUltrasonic testing 606 $aElectrical engineering$2bicssc 606 $aTECHNOLOGY & ENGINEERING / Electrical$2bisacsh 615 0$aWave-motion, Theory of. 615 0$aNonlinear waves. 615 0$aOptical wave guides. 615 0$aUltrasonic testing. 615 7$aElectrical engineering. 615 7$aTECHNOLOGY & ENGINEERING / Electrical. 676 $a530.12/4 700 $aLissenden$b Cliff J$01398770 712 02$aInstitute of Physics (Great Britain), 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911026076403321 996 $aNonlinear Ultrasonic Guided Waves$94433730 997 $aUNINA