LEADER 03693nam 2200601 a 450 001 9910462251203321 005 20200520144314.0 010 $a0-674-06969-2 010 $a0-674-06585-9 024 7 $a10.4159/harvard.9780674065482 035 $a(CKB)2670000000234199 035 $a(StDuBDS)AH24437902 035 $a(SSID)ssj0000720940 035 $a(PQKBManifestationID)11427803 035 $a(PQKBTitleCode)TC0000720940 035 $a(PQKBWorkID)10687290 035 $a(PQKB)11319073 035 $a(MiAaPQ)EBC3301120 035 $a(DE-B1597)178214 035 $a(OCoLC)806492775 035 $a(OCoLC)840443461 035 $a(DE-B1597)9780674065482 035 $a(Au-PeEL)EBL3301120 035 $a(CaPaEBR)ebr10591020 035 $a(EXLCZ)992670000000234199 100 $a20120123d2012 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aInternal time$b[electronic resource] $echronotypes, social jet lag, and why you're so tired /$fTill Roenneberg 210 $aCambridge, Mass. $cHarvard University Press$d2012 215 $a1 online resource (viii, 272 p. ) $cill 300 $aFormerly CIP.$5Uk 311 $a0-674-06548-4 320 $aIncludes bibliographical references and index. 327 $aWorlds apart -- Of early birds and long sleepers -- Counting sheep -- A curious astronomer -- The lost days -- The periodic shift worker -- The fast hamster -- Dawn at the gym -- The elusive transcript -- Temporal ecology -- Wait until dark -- The end of adolescence -- What a waste of time! -- Days on other planets -- When will my organs arrive? -- The scissors of sleep -- Early socialists-late capitalists -- Constant twilight -- From Frankfurt to Morocco and back -- Light at night -- Partnership timing -- A clock for all seasons -- Professional selection -- The nocturnal bottleneck. 330 $aEarly birds and night owls are born, not made. Sleep patterns may be the most obvious manifestation of the highly individualized biological clocks we inherit, but these clocks also regulate bodily functions from digestion to hormone levels to cognition. Living at odds with our internal timepieces, Till Roenneberg shows, can make us chronically sleep deprived and more likely to smoke, gain weight, feel depressed, fall ill, and fail geometry. By understanding and respecting our internal time, we can live better.Internal Time combines storytelling with accessible science tutorials to explain how our internal clocks work-for example, why morning classes are so unpopular and why "lazy" adolescents are wise to avoid them. We learn why the constant twilight of our largely indoor lives makes us dependent on alarm clocks and tired, and why social demands and work schedules lead to a social jet lag that compromises our daily functioning.Many of the factors that make us early or late "chronotypes" are beyond our control, but that doesn't make us powerless. Roenneberg recommends that the best way to sync our internal time with our external environment and feel better is to get more sunlight. Such simple steps as cycling to work and eating breakfast outside may be the tickets to a good night's sleep, better overall health, and less grouchiness in the morning. 606 $aChronobiology 606 $aBiological rhythms 608 $aElectronic books. 615 0$aChronobiology. 615 0$aBiological rhythms. 676 $a612/.022 700 $aRoenneberg$b Till$01046256 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910462251203321 996 $aInternal time$92473040 997 $aUNINA LEADER 05855nam 22008175 450 001 996465848803316 005 20200630012557.0 010 $a3-642-33530-6 024 7 $a10.1007/978-3-642-33530-3 035 $a(CKB)3400000000086218 035 $a(SSID)ssj0000767561 035 $a(PQKBManifestationID)11424747 035 $a(PQKBTitleCode)TC0000767561 035 $a(PQKBWorkID)10740000 035 $a(PQKB)10976475 035 $a(DE-He213)978-3-642-33530-3 035 $a(MiAaPQ)EBC3070192 035 $a(PPN)168324741 035 $a(EXLCZ)993400000000086218 100 $a20120918d2012 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aMultimodal Brain Image Analysis$b[electronic resource] $eSecond International Workshop, MBIA 2012, Held in Conjunction with MICCAI 2012, Nice, France, October 1-5, 2012, Proceedings /$fedited by Pew-Thian Yap, Tianming Liu, Dinggang Shen, Carl-Fredrik Westin, Li Shen 205 $a1st ed. 2012. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2012. 215 $a1 online resource (XII, 226 p. 77 illus.) 225 1 $aImage Processing, Computer Vision, Pattern Recognition, and Graphics ;$v7509 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-33529-2 320 $aIncludes bibliographical references and author index. 327 $aMultimodal Neuroimaging Predictors for Cognitive Performance Using Structured Sparse Learning -- Combining DTI and MRI for the Automated Detection of Alzheimer?s Disease Using a Large European Multicenter Dataset -- Genetics of Path Lengths in Brain Connectivity Networks: HARDI-Based Maps in 457 Adults -- Connectivity Network Breakdown Predicts Imminent Volumetric Atrophy in Early Mild Cognitive Impairment.-Deconfounding the Effects of Resting State Activity on Task Activation Detection in fMRI -- Hyperbolic Ricci Flow and Its Application in Studying Lateral Ventricle Morphometry -- Do We Really Need Robust and Alternative Inference Methods for Brain MRI -- Sparse Patch-Based Label Fusion for Multi-Atlas Segmentation -- How Many Templates Does It Take for a Good Segmentation?: Error Analysis in Multiatlas Segmentation as a Function of Database Size -- A Generative Model for Probabilistic Label Fusion of Multimodal Data -- Spatial Normalization of Diffusion Tensor Images with Voxel-Wise Reconstruction of the Diffusion Gradient Direction -- Automatic Population HARDI White Matter Tract Clustering by Label Fusion of Multiple Tract Atlases.-  Comparative Characterisation of Susceptibility Weighted MRI for Brain White Matter Lesions in MS -- Constructing Fiber Atlases for Functional ROIs via fMRI-Guided DTI Image Registration -- Structural Feature Selection for Connectivity Network-Based MCI Diagnosis.-  Groupwise Segmentation Improves Neuroimaging Classification Accuracy -- DWI Denoising Using Spatial, Angular, and Radiometric Filtering.-  MRI Estimation of T1 Relaxation Time Using a Constrained Optimization Algorithm -- Robust Cerebral Blood Flow Map Estimation in Arterial Spin Labeling. . 330 $aThis book constitutes the refereed proceedings of the Second International Workshop on Multimodal Brain Image Analysis, held in conjunction with MICCAI 2012, in Nice, France, in October 2012. The 19 revised full papers presented were carefully reviewed and selected from numerous submissions. The objective of this workshop is to forward the state of the art in analysis methodologies, algorithms, software systems, validation approaches, benchmark datasets, neuroscience, and clinical applications. 410 0$aImage Processing, Computer Vision, Pattern Recognition, and Graphics ;$v7509 606 $aPattern recognition 606 $aOptical data processing 606 $aComputer graphics 606 $aArtificial intelligence 606 $aAlgorithms 606 $aRadiology 606 $aPattern Recognition$3https://scigraph.springernature.com/ontologies/product-market-codes/I2203X 606 $aImage Processing and Computer Vision$3https://scigraph.springernature.com/ontologies/product-market-codes/I22021 606 $aComputer Graphics$3https://scigraph.springernature.com/ontologies/product-market-codes/I22013 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 606 $aAlgorithm Analysis and Problem Complexity$3https://scigraph.springernature.com/ontologies/product-market-codes/I16021 606 $aImaging / Radiology$3https://scigraph.springernature.com/ontologies/product-market-codes/H29005 615 0$aPattern recognition. 615 0$aOptical data processing. 615 0$aComputer graphics. 615 0$aArtificial intelligence. 615 0$aAlgorithms. 615 0$aRadiology. 615 14$aPattern Recognition. 615 24$aImage Processing and Computer Vision. 615 24$aComputer Graphics. 615 24$aArtificial Intelligence. 615 24$aAlgorithm Analysis and Problem Complexity. 615 24$aImaging / Radiology. 676 $a616.8/04757 702 $aYap$b Pew-Thian$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aLiu$b Tianming$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aShen$b Dinggang$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aWestin$b Carl-Fredrik$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aShen$b Li$4edt$4http://id.loc.gov/vocabulary/relators/edt 712 12$aInternational Conference on Medical Image Computing and Computer-Assisted Intervention$d(15th :$f2012 :$eNice, France) 906 $aBOOK 912 $a996465848803316 996 $aMultimodal Brain Image Analysis$92830142 997 $aUNISA LEADER 01698nam 2200421 a 450 001 9910695332003321 005 20061018155833.0 035 $a(CKB)5470000002369432 035 $a(OCoLC)73523794 035 $a(EXLCZ)995470000002369432 100 $a20061018d2006 ua 0 101 0 $aeng 135 $aurmn|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNo Child Left Behind Act$b[electronic resource] $estates face challenges measuring academic growth : testimony before the House Committee on Education and the Workforce /$fstatement of Marnie S. Shaul 210 1$a[Washington, D.C.] :$cU.S. Government Accountability Office,$d[2006] 215 $a20 pages $cdigital, PDF file 225 1 $aTestimony ;$vGAO-06-948 T 300 $aTitle from title screen (viewed on Sept. 26, 2006). 300 $a"For release ... July 27, 2006." 300 $aPaper version available from: U.S. Government Accountability Office, 441 G St., NW, Rm. LM, Washington, D.C. 20548. 320 $aIncludes bibliographical references. 517 $aNo Child Left Behind Act 606 $aEducational accountability$zUnited States$xStates 606 $aEducational indicators$zUnited States 615 0$aEducational accountability$xStates. 615 0$aEducational indicators 700 $aShaul$b Marnie$01381013 712 02$aUnited States.$bCongress.$bHouse.$bCommittee on Education and the Workforce. 712 02$aUnited States.$bGovernment Accountability Office. 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910695332003321 996 $aNo Child Left Behind Act$93429221 997 $aUNINA