LEADER 03083nam 22005055 450 001 996465827403316 005 20200706044351.0 010 $a3-540-47755-1 024 7 $a10.1007/BFb0000035 035 $a(CKB)1000000000230649 035 $a(SSID)ssj0000322274 035 $a(PQKBManifestationID)11233023 035 $a(PQKBTitleCode)TC0000322274 035 $a(PQKBWorkID)10287567 035 $a(PQKB)11310558 035 $a(DE-He213)978-3-540-47755-6 035 $a(PPN)155198157 035 $a(EXLCZ)991000000000230649 100 $a20121227d1987 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aConstrained Global Optimization: Algorithms and Applications$b[electronic resource] /$fby Panos M. Pardalos, J. Ben Rosen 205 $a1st ed. 1987. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1987. 215 $a1 online resource (IX, 143 p.) 225 1 $aLecture Notes in Computer Science,$x0302-9743 ;$v268 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-18095-8 327 $aConvex sets and functions -- Optimality conditions in nonlinear programming -- Combinatorial optimization problems that can be formulated as nonconvex quadratic problems -- Enumerative methods in nonconvex programming -- Cutting plane methods -- Branch and bound methods -- Bilinear programming methods for nonconvex quadratic problems -- Large scale problems -- Global minimization of indefinite quadratic problems -- Test problems for global nonconvex quadratic programming algorithms. 330 $aGlobal optimization is concerned with the characterization and computation of global minima or maxima of nonlinear functions. Such problems are widespread in mathematical modeling of real world systems for a very broad range of applications. The applications include economies of scale, fixed charges, allocation and location problems, quadratic assignment and a number of other combinatorial optimization problems. More recently it has been shown that certain aspects of VLSI chip design and database problems can be formulated as constrained global optimization problems with a quadratic objective function. Although standard nonlinear programming algorithms will usually obtain a local minimum to the problem , such a local minimum will only be global when certain conditions are satisfied (such as f and K being convex). 410 0$aLecture Notes in Computer Science,$x0302-9743 ;$v268 606 $aNumerical analysis 606 $aNumerical Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M14050 615 0$aNumerical analysis. 615 14$aNumerical Analysis. 676 $a518 700 $aPardalos$b Panos M$4aut$4http://id.loc.gov/vocabulary/relators/aut$0318341 702 $aRosen$b J. Ben$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a996465827403316 996 $aConstrained global optimization$9384503 997 $aUNISA