LEADER 04682nam 22007575 450 001 996465800003316 005 20200701202804.0 010 $a3-540-39917-8 024 7 $a10.1007/b13700 035 $a(CKB)1000000000212199 035 $a(SSID)ssj0000323942 035 $a(PQKBManifestationID)11285440 035 $a(PQKBTitleCode)TC0000323942 035 $a(PQKBWorkID)10318949 035 $a(PQKB)10768884 035 $a(DE-He213)978-3-540-39917-9 035 $a(MiAaPQ)EBC3087700 035 $a(PPN)15518198X 035 $a(EXLCZ)991000000000212199 100 $a20121227d2003 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aInductive Logic Programming$b[electronic resource] $e13th International Conference, ILP 2003, Szeged, Hungary, September 29 - October 1, 2003, Proceedings /$fedited by Tamas Horváth, Akihiro Yamamoto 205 $a1st ed. 2003. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2003. 215 $a1 online resource (X, 406 p.) 225 1 $aLecture Notes in Artificial Intelligence ;$v2835 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-20144-0 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aInvited Papers -- A Personal View of How Best to Apply ILP -- Agents that Reason and Learn -- Research Papers -- Mining Model Trees: A Multi-relational Approach -- Complexity Parameters for First-Order Classes -- A Multi-relational Decision Tree Learning Algorithm ? Implementation and Experiments -- Applying Theory Revision to the Design of Distributed Databases -- Disjunctive Learning with a Soft-Clustering Method -- ILP for Mathematical Discovery -- An Exhaustive Matching Procedure for the Improvement of Learning Efficiency -- Efficient Data Structures for Inductive Logic Programming -- Graph Kernels and Gaussian Processes for Relational Reinforcement Learning -- On Condensation of a Clause -- A Comparative Evaluation of Feature Set Evolution Strategies for Multirelational Boosting -- Comparative Evaluation of Approaches to Propositionalization -- Ideal Refinement of Descriptions in -Log -- Which First-Order Logic Clauses Can Be Learned Using Genetic Algorithms? -- Improved Distances for Structured Data -- Induction of Enzyme Classes from Biological Databases -- Estimating Maximum Likelihood Parameters for Stochastic Context-Free Graph Grammars -- Induction of the Effects of Actions by Monotonic Methods -- Hybrid Abductive Inductive Learning: A Generalisation of Progol -- Query Optimization in Inductive Logic Programming by Reordering Literals -- Efficient Learning of Unlabeled Term Trees with Contractible Variables from Positive Data -- Relational IBL in Music with a New Structural Similarity Measure -- An Effective Grammar-Based Compression Algorithm for Tree Structured Data. 410 0$aLecture Notes in Artificial Intelligence ;$v2835 606 $aSoftware engineering 606 $aArtificial intelligence 606 $aComputer science 606 $aComputer programming 606 $aMathematical logic 606 $aSoftware Engineering/Programming and Operating Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/I14002 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 606 $aComputer Science, general$3https://scigraph.springernature.com/ontologies/product-market-codes/I00001 606 $aProgramming Techniques$3https://scigraph.springernature.com/ontologies/product-market-codes/I14010 606 $aMathematical Logic and Formal Languages$3https://scigraph.springernature.com/ontologies/product-market-codes/I16048 615 0$aSoftware engineering. 615 0$aArtificial intelligence. 615 0$aComputer science. 615 0$aComputer programming. 615 0$aMathematical logic. 615 14$aSoftware Engineering/Programming and Operating Systems. 615 24$aArtificial Intelligence. 615 24$aComputer Science, general. 615 24$aProgramming Techniques. 615 24$aMathematical Logic and Formal Languages. 676 $a05.115 702 $aHorváth$b Tamas$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aYamamoto$b Akihiro$4edt$4http://id.loc.gov/vocabulary/relators/edt 712 12$aILP (Conference) 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996465800003316 996 $aInductive Logic Programming$9772244 997 $aUNISA