LEADER 01022nam--2200361---450 001 990002094710203316 005 20210419190730.0 035 $a000209471 035 $aUSA01000209471 035 $a(ALEPH)000209471USA01 035 $a000209471 100 $a20041020d1984----km-y0itay0103----ba 101 $aeng 102 $aGB 105 $a||||||||001yy 200 1 $aIntermediate language skills$ewriting$fMichael Carrier 210 $aLondon$cHodder & Stoughton$d1984 215 $a95 p.$cill.$d25 cm 410 0$12001 454 1$12001 461 1$1001-------$12001 606 0 $aLingua inglese$xTesti per l'insegnamento 676 $a428 700 1$aCARRIER,$bMichael$0567535 801 0$aIT$bsalbc$gISBD 912 $a990002094710203316 951 $aVII.3.D. 150 (Il i II 54)$b23114 E.C.$cIl i II 959 $aBK 969 $aUMA 979 $aSIAV7$b10$c20041020$lUSA01$h1046 979 $aCOPAT2$b90$c20050519$lUSA01$h1215 996 $aIntermediate language skills$91037534 997 $aUNISA LEADER 03497nam 22006855 450 001 996465773103316 005 20200705124319.0 010 $a3-540-48202-4 024 7 $a10.1007/3-540-57503-0 035 $a(CKB)1000000000234060 035 $a(SSID)ssj0000327345 035 $a(PQKBManifestationID)11276290 035 $a(PQKBTitleCode)TC0000327345 035 $a(PQKBWorkID)10301612 035 $a(PQKB)10011404 035 $a(DE-He213)978-3-540-48202-4 035 $a(PPN)155237632 035 $a(EXLCZ)991000000000234060 100 $a20121227d1993 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aTowards Dynamic Randomized Algorithms in Computational Geometry$b[electronic resource] /$fby Monique Teillaud 205 $a1st ed. 1993. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1993. 215 $a1 online resource (XI, 169 p.) 225 1 $aLecture Notes in Computer Science,$x0302-9743 ;$v758 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-57503-0 327 $aFundamental structures -- Static randomized incremental algorithms -- The Delaunay tree -- A general structure: The influence graph -- The k-Delaunay tree -- Towards a fully dynamic structure -- Parallel work. 330 $aComputational geometry concerns itself with designing and analyzing algorithms for solving geometric problems. The field has reached a high level of sophistication, and very complicated algorithms have been designed.However, it is also useful to develop more practical algorithms, so long as they are based on rigorous methods. One such method is the use of randomized algorithms. These algorithms have become more and more popular, turning into one of the hottest areas of recent years. Dynamic algorithms are particularly interesting because in practice the data of a problem are often acquired progressively. In this monograph the author studies the theoretical complexity and practical efficiency of randomized dynamic algorithms. 410 0$aLecture Notes in Computer Science,$x0302-9743 ;$v758 606 $aComputers 606 $aComputer graphics 606 $aAlgorithms 606 $aCombinatorics 606 $aGeometry 606 $aTheory of Computation$3https://scigraph.springernature.com/ontologies/product-market-codes/I16005 606 $aComputer Graphics$3https://scigraph.springernature.com/ontologies/product-market-codes/I22013 606 $aAlgorithm Analysis and Problem Complexity$3https://scigraph.springernature.com/ontologies/product-market-codes/I16021 606 $aCombinatorics$3https://scigraph.springernature.com/ontologies/product-market-codes/M29010 606 $aGeometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21006 615 0$aComputers. 615 0$aComputer graphics. 615 0$aAlgorithms. 615 0$aCombinatorics. 615 0$aGeometry. 615 14$aTheory of Computation. 615 24$aComputer Graphics. 615 24$aAlgorithm Analysis and Problem Complexity. 615 24$aCombinatorics. 615 24$aGeometry. 676 $a516/.13/028551 700 $aTeillaud$b Monique$4aut$4http://id.loc.gov/vocabulary/relators/aut$0714596 906 $aBOOK 912 $a996465773103316 996 $aTowards dynamic randomized algorithms in computational geometry$91381927 997 $aUNISA