LEADER 04283nam 22006975 450 001 996465729003316 005 20240327180955.0 010 $a3-540-46740-8 024 7 $a10.1007/BFb0018340 035 $a(CKB)1000000000233456 035 $a(SSID)ssj0000321780 035 $a(PQKBManifestationID)11246336 035 $a(PQKBTitleCode)TC0000321780 035 $a(PQKBWorkID)10280957 035 $a(PQKB)10424583 035 $a(DE-He213)978-3-540-46740-3 035 $a(PPN)155189301 035 $a(EXLCZ)991000000000233456 100 $a20121227d1989 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aCategory Theory and Computer Science$b[electronic resource] $eManchester, UK, September 5-8, 1989. Proceedings /$fedited by David H. Pitt, David E. Rydeheard, Peter Dybjer, Andrew Pitts, Axel Poigne 205 $a1st ed. 1989. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1989. 215 $a1 online resource (VIII, 372 p.) 225 1 $aLecture Notes in Computer Science,$x0302-9743 ;$v389 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-51662-X 327 $aCoherence and valid isomorphism in closed categories applications of proof theory to category theory in a computer sclentist perspective -- An algebraic view of interleaving and distributed operational semantics for CCS -- Temporal structures -- Compositional relational semantics for indeterminate dataflow networks -- Operations on records -- Projections for polymorphic strictness analysis -- A category-theoretic account of program modules -- A note on categorical datatypes -- A set constructor for inductive sets in Martin-Löf's type theory -- Independence results for calculi of dependent types -- Quantitative domains, groupoids and linear logic -- Graded multicategories of polynomial-time realizers -- On the semantics of second order lambda calculus: From bruce-meyer-mitchell models to hyperdoctrine models and vice-versa -- Dictoses -- Declarative continuations: An investigation of duality in programming language semantics -- Logic representation in LF -- Unification properties of commutative theories: A categorical treatment -- An abstract formulation for rewrite systems -- From petri nets to linear logic -- A dialectica-like model of linear logic -- A final coalgebra theorem. 410 0$aLecture Notes in Computer Science,$x0302-9743 ;$v389 606 $aSoftware engineering 606 $aComputer logic 606 $aMathematical logic 606 $aProgramming languages (Electronic computers) 606 $aSoftware Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/I14029 606 $aLogics and Meanings of Programs$3https://scigraph.springernature.com/ontologies/product-market-codes/I1603X 606 $aMathematical Logic and Formal Languages$3https://scigraph.springernature.com/ontologies/product-market-codes/I16048 606 $aProgramming Languages, Compilers, Interpreters$3https://scigraph.springernature.com/ontologies/product-market-codes/I14037 606 $aMathematical Logic and Foundations$3https://scigraph.springernature.com/ontologies/product-market-codes/M24005 615 0$aSoftware engineering. 615 0$aComputer logic. 615 0$aMathematical logic. 615 0$aProgramming languages (Electronic computers). 615 14$aSoftware Engineering. 615 24$aLogics and Meanings of Programs. 615 24$aMathematical Logic and Formal Languages. 615 24$aProgramming Languages, Compilers, Interpreters. 615 24$aMathematical Logic and Foundations. 676 $a005.1 702 $aPitt$b David$g(David H.),$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aRydeheard$b David E$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aDybjer$b Peter$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aPitts$b Andrew$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aPoigne$b Axel$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a996465729003316 996 $aCategory theory and computer science$9382680 997 $aUNISA