LEADER 10798nam 22008295 450 001 996465727103316 005 20200704234936.0 010 $a3-540-27814-1 024 7 $a10.1007/b98923 035 $a(CKB)1000000000212470 035 $a(DE-He213)978-3-540-27814-6 035 $a(SSID)ssj0000176471 035 $a(PQKBManifestationID)11165359 035 $a(PQKBTitleCode)TC0000176471 035 $a(PQKBWorkID)10207523 035 $a(PQKB)11362215 035 $a(MiAaPQ)EBC3088552 035 $a(PPN)155209868 035 $a(EXLCZ)991000000000212470 100 $a20121227d2004 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aImage and Video Retrieval$b[electronic resource] $eThird International Conference, CIVR 2004, Dublin, Ireland, July 21-23, 2004, Proceedings /$fedited by Peter Enser, Yiannis Kompatsiaris, Noel E. O'Connor, Alan Smeaton, Arnold W.M. Smeulders 205 $a1st ed. 2004. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2004. 215 $a1 online resource (XVIII, 686 p.) 225 1 $aLecture Notes in Computer Science,$x0302-9743 ;$v3115 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-22539-0 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aKeynote Speaker Abstracts -- Pattern Mining in Large-Scale Image and Video Sources -- Computer Vision in the Movies: From the Lab to the Big Screen -- Image and Video Retrieval Using New Capture and Display Devices -- Models of Interaction with Video Information -- Image Annotation and User Searching -- User Strategies in Video Retrieval: A Case Study -- Video Content Foraging -- Using Maximum Entropy for Automatic Image Annotation -- Everything Gets Better All the Time, Apart from the Amount of Data -- Image and Video Retrieval Algorithms (I) -- An Inference Network Approach to Image Retrieval -- Small Sample Size Performance of Evolutionary Algorithms for Adaptive Image Retrieval -- Co-retrieval: A Boosted Reranking Approach for Video Retrieval -- Poster Session (I) -- HMM Model Selection Issues for Soccer Video -- Tennis Video Analysis Based on Transformed Motion Vectors -- Semantic Event Detection in Sports Through Motion Understanding -- Structuring Soccer Video Based on Audio Classification and Segmentation Using Hidden Markov Model -- EDU: A Model of Video Summarization -- A News Video Mining Method Based on Statistical Analysis and Visualization -- Topic Threading for Structuring a Large-Scale News Video Archive -- What?s News, What?s Not? Associating News Videos with Words -- Visual Clustering of Trademarks Using a Component-Based Matching Framework -- Assessing Scene Structuring in Consumer Videos -- A Visual Model Approach for Parsing Colonoscopy Videos -- Video Summarization and Retrieval System Using Face Recognition and MPEG-7 Descriptors -- Automatic Generation of Personalized Digest Based on Context Flow and Distinctive Events -- Content-Based Image Retrieval and Characterization on Specific Web Collections -- Exploiting Problem Domain Knowledge for Accurate Building Image Classification -- Natural Scene Retrieval Based on a Semantic Modeling Step -- Unsupervised Text Segmentation Using Color and Wavelet Features -- Universal and Personalized Access to Content via J2ME Terminals in the DYMAS System -- Task-Based User Evaluation of Content-Based Image Database Browsing Systems -- The CLEF Cross Language Image Retrieval Track (ImageCLEF) 2004 -- An Empirical Investigation of the Scalability of a Multiple Viewpoint CBIR System -- Real-Time Video Indexing System for Live Digital Broadcast TV Programs -- Person and Event Identification for Retrieval -- Finding Person X: Correlating Names with Visual Appearances -- A Framework for Semantic Classification of Scenes Using Finite State Machines -- Automated Person Identification in Video -- Content-Based Image and Video Retrieval (I) -- Content Based Image Synthesis -- Interactive Content-Based Retrieval Using Pre-computed Object-Object Similarities -- Content-Based Image and Video Retrieval (II) -- Salient Regions for Query by Image Content -- Evaluation of Texture Features for Content-Based Image Retrieval -- An Effective Approach Towards Content-Based Image Retrieval -- Image and Video Retrieval Algorithms (II) -- Multimedia Retrieval Using Multiple Examples -- A Discussion of Nonlinear Variants of Biased Discriminants for Interactive Image Retrieval -- Poster Session (II) -- Salient Objects: Semantic Building Blocks for Image Concept Interpretation -- Multimodal Salient Objects: General Building Blocks of Semantic Video Concepts -- Video Content Representation as Salient Regions of Activity -- Image Classification into Object / Non-object Classes -- Video Segmentation Using Hidden Markov Model with Multimodal Features -- Feature Based Cut Detection with Automatic Threshold Selection -- A Geometrical Key-Frame Selection Method Exploiting Dominant Motion Estimation in Video -- Extraction of Salient Features for Image Retrieval Using Multi-scale Image Relevance Function -- Relevance Feedback for Keyword and Visual Feature-Based Image Retrieval -- Relevance Feedback Reinforced with Semantics Accumulation -- Faster Exact Histogram Intersection on Large Data Collections Using Inverted VA-Files -- A Graph Edit Distance Based on Node Merging -- STRICT: An Image Retrieval Platform for Queries Based on Regional Content -- Improved Video Content Indexing by Multiple Latent Semantic Analysis -- Three Interfaces for Content-Based Access to Image Collections -- Retrieving ClipArt Images by Content -- Use of Image Subset Features in Image Retrieval with Self-Organizing Maps -- An Indexing Model of Remote Sensing Images -- Ambient Intelligence Through Image Retrieval -- A Knowledge Management System for Intelligent Retrieval of Geo-Spatial Imagery -- An Adaptive Image Content Representation and Segmentation Approach to Automatic Image Annotation -- Knowledge Assisted Analysis and Categorization for Semantic Video Retrieval -- Content-Based Image and Video Retrieval (III) -- Using Structure for Video Object Retrieval -- Object Segmentation and Ontologies for MPEG-2 Video Indexing and Retrieval -- Interoperability Support for Ontology-Based Video Retrieval Applications -- EU Project Session (I) -- A Test-Bed for Region-Based Image Retrieval Using Multiple Segmentation Algorithms and the MPEG-7 eXperimentation Model: The Schema Reference System -- ICBR ? Multimedia Management System for Intelligent Content Based Retrieval -- Contribution of NLP to the Content Indexing of Multimedia Documents -- The CIMWOS Multimedia Indexing System -- User Perspectives -- Image Retrieval Interfaces: A User Perspective -- EU Project Session (II) -- SCULPTEUR: Multimedia Retrieval for Museums -- Disclosure of Non-scripted Video Content: InDiCo and M4/AMI -- A User-Centred System for End-to-End Secure Multimedia Content Delivery: From Content Annotation to Consumer Consumption -- Adding Semantics to Audiovisual Content: The FAETHON Project -- Towards a Large Scale Concept Ontology for Broadcast Video. 330 $aWe greeted the attendees of CIVR 2004 with the following address: ?T´ aimid an- ´ bhroduil ´ failte ´ a chur romhaibh chuig Ollscoil Chathair Bhaile Atha Cliath agus ´ chuig an triu ´ Comhdh´ ail Idirn´ aisiun ´ ta ar Aisghabh´ ail Iomh´ anna agus F´ ?se´ an. ´ T´asuil ´ againn go mbeidh am iontach agaibh anseo in Eirinn agus go mbeidh bhur gcuairt taitneamhnach agus sas ´ uil. ´ T´ aimid an-bhroduil ´ go hairithe ´ failte ´ a chur roimh na daoine on ´ oiread sin t´ ?ortha difriula ´ agus na daoine a th´ ainig as i bhfad i gc´ ein. T´aanoireadsinpaip ´ ´ ear curtha isteach chuig an chomhdh´ ail seo go bhfuil caighde´ an na bp´ aip´ ear agus na bp´ ostaer an-ard ar fad agus taimid ´ ag s´ uil go mor ´ le h´ ocaid iontach. ? rd We were delighted to host the 3 International Conference on Image and Video Retrieval in Dublin City University. We hope that all attendees had a wonderful stay in Ireland and that their visits were enjoyable and rewarding. There were 125 papers in total submitted to the CIVR2004 conference and each was reviewed by at least three independent reviewers. We are grateful to the 64 members of the technical programme committee and the 29 other rev- wers who completed these reviews and allowed us to put together a very strong technical programme. 410 0$aLecture Notes in Computer Science,$x0302-9743 ;$v3115 606 $aApplication software 606 $aInformation storage and retrieval 606 $aDatabase management 606 $aMultimedia information systems 606 $aOptical data processing 606 $aComputer Applications$3https://scigraph.springernature.com/ontologies/product-market-codes/I23001 606 $aInformation Storage and Retrieval$3https://scigraph.springernature.com/ontologies/product-market-codes/I18032 606 $aDatabase Management$3https://scigraph.springernature.com/ontologies/product-market-codes/I18024 606 $aInformation Systems Applications (incl. Internet)$3https://scigraph.springernature.com/ontologies/product-market-codes/I18040 606 $aMultimedia Information Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/I18059 606 $aImage Processing and Computer Vision$3https://scigraph.springernature.com/ontologies/product-market-codes/I22021 615 0$aApplication software. 615 0$aInformation storage and retrieval. 615 0$aDatabase management. 615 0$aMultimedia information systems. 615 0$aOptical data processing. 615 14$aComputer Applications. 615 24$aInformation Storage and Retrieval. 615 24$aDatabase Management. 615 24$aInformation Systems Applications (incl. Internet). 615 24$aMultimedia Information Systems. 615 24$aImage Processing and Computer Vision. 676 $a621.367 702 $aEnser$b Peter$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aKompatsiaris$b Yiannis$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aO'Connor$b Noel E$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aSmeaton$b Alan$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aSmeulders$b Arnold W.M$4edt$4http://id.loc.gov/vocabulary/relators/edt 712 12$aCIVR 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996465727103316 996 $aImage and Video Retrieval$9772857 997 $aUNISA