LEADER 03953nam 22006495 450 001 996465690203316 005 20230330021650.0 010 $a3-319-93818-5 024 7 $a10.1007/978-3-319-93818-9 035 $a(CKB)3810000000358686 035 $a(DE-He213)978-3-319-93818-9 035 $a(MiAaPQ)EBC6286346 035 $a(PPN)229494560 035 $a(EXLCZ)993810000000358686 100 $a20180615d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvances in Swarm Intelligence$b[electronic resource] $e9th International Conference, ICSI 2018, Shanghai, China, June 17-22, 2018, Proceedings, Part II /$fedited by Ying Tan, Yuhui Shi, Qirong Tang 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (XXIV, 579 p. 247 illus.) 225 1 $aTheoretical Computer Science and General Issues,$x2512-2029 ;$v10942 311 $a3-319-93817-7 320 $aIncludes bibliographical references and index. 327 $aMulti-agent systems -- swarm robotics -- fuzzy logic approaches -- planning and routing problems -- recommendation in social media -- predication -- classification -- finding patterns -- image enhancement -- deep learning -- theories and models of swarm intelligence -- ant colony optimization -- particle swarm optimization -- artificial bee colony algorithms -- genetic algorithms -- differential evolution -- fireworks algorithm -- bacterial foraging optimization -- artificial immune system -- hydrologic cycle optimization -- other swarm-based optimization algorithms -- hybrid optimization algorithms -- multi-objective optimization -- large-scale global optimization. . 330 $aThe two-volume set of LNCS 10941 and 10942 constitutes the proceedings of the 9th International Conference on Advances in Swarm Intelligence, ICSI 2018, held in Shanghai, China, in June 2018. The total of 113 papers presented in these volumes was carefully reviewed and selected from 197 submissions. The papers were organized in topical sections namely: multi-agent systems; swarm robotics; fuzzy logic approaches; planning and routing problems; recommendation in social media; predication; classification; finding patterns; image enhancement; deep learning; theories and models of swarm intelligence; ant colony optimization; particle swarm optimization; artificial bee colony algorithms; genetic algorithms; differential evolution; fireworks algorithm; bacterial foraging optimization; artificial immune system; hydrologic cycle optimization; other swarm-based optimization algorithms; hybrid optimization algorithms; multi-objective optimization; large-scale global optimization. 410 0$aTheoretical Computer Science and General Issues,$x2512-2029 ;$v10942 606 $aAlgorithms 606 $aArtificial intelligence 606 $aComputer networks 606 $aComputer engineering 606 $aAlgorithms 606 $aArtificial Intelligence 606 $aComputer Communication Networks 606 $aComputer Engineering and Networks 615 0$aAlgorithms. 615 0$aArtificial intelligence. 615 0$aComputer networks. 615 0$aComputer engineering. 615 14$aAlgorithms. 615 24$aArtificial Intelligence. 615 24$aComputer Communication Networks. 615 24$aComputer Engineering and Networks. 676 $a006.3 702 $aTan$b Ying$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aShi$b Yuhui$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aTang$b Qirong$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996465690203316 996 $aAdvances in Swarm Intelligence$92005634 997 $aUNISA