LEADER 04150nam 22006975 450 001 996465689603316 005 20230330022315.0 010 $a3-319-93815-0 024 7 $a10.1007/978-3-319-93815-8 035 $a(CKB)3810000000358685 035 $a(DE-He213)978-3-319-93815-8 035 $a(MiAaPQ)EBC6295168 035 $a(PPN)229494579 035 $a(EXLCZ)993810000000358685 100 $a20180615d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvances in Swarm Intelligence$b[electronic resource] $e9th International Conference, ICSI 2018, Shanghai, China, June 17-22, 2018, Proceedings, Part I /$fedited by Ying Tan, Yuhui Shi, Qirong Tang 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (XXIV, 639 p. 183 illus.) 225 1 $aTheoretical Computer Science and General Issues,$x2512-2029 ;$v10941 311 $a3-319-93814-2 327 $aTheories and models of swarm intelligence -- ant colony optimization; particle swarm optimization -- artificial bee colony algorithms -- genetic algorithms -- differential evolution -- fireworks algorithms -- bacterial foraging optimization -- artificial immune system -- hydrologic cycle optimization -- other swarm-based optimization algorithms -- hybrid optimization algorithms -- multi-objective optimization -- large-scale global optimization -- multi-agent systems -- swarm robotics; fuzzy logic approaches -- planning and routing problems -- recommendation in social media -- prediction -- classification -- finding patterns -- image enhancement -- deep learning. 330 $aThe two-volume set of LNCS 10941 and 10942 constitutes the proceedings of the 9th International Conference on Advances in Swarm Intelligence, ICSI 2018, held in Shanghai, China, in June 2018. The total of 113 papers presented in these volumes was carefully reviewed and selected from 197 submissions. The papers were organized in topical sections as follows: theories and models of swarm intelligence; ant colony optimization; particle swarm optimization; artificial bee colony algorithms; genetic algorithms; differential evolution; fireworks algorithms; bacterial foraging optimization; artificial immune system; hydrologic cycle optimization; other swarm-based optimization algorithms; hybrid optimization algorithms; multi-objective optimization; large-scale global optimization; multi-agent systems; swarm robotics; fuzzy logic approaches; planning and routing problems; recommendation in social media; prediction, classification; finding patterns; image enhancement; deep learning. . 410 0$aTheoretical Computer Science and General Issues,$x2512-2029 ;$v10941 606 $aAlgorithms 606 $aArtificial intelligence 606 $aComputer networks 606 $aComputers, Special purpose 606 $aSoftware engineering 606 $aComputer science 606 $aAlgorithms 606 $aArtificial Intelligence 606 $aComputer Communication Networks 606 $aSpecial Purpose and Application-Based Systems 606 $aSoftware Engineering 606 $aModels of Computation 615 0$aAlgorithms. 615 0$aArtificial intelligence. 615 0$aComputer networks. 615 0$aComputers, Special purpose. 615 0$aSoftware engineering. 615 0$aComputer science. 615 14$aAlgorithms. 615 24$aArtificial Intelligence. 615 24$aComputer Communication Networks. 615 24$aSpecial Purpose and Application-Based Systems. 615 24$aSoftware Engineering. 615 24$aModels of Computation. 676 $a005.1 702 $aTan$b Ying$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aShi$b Yuhui$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aTang$b Qirong$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a996465689603316 996 $aAdvances in Swarm Intelligence$92005634 997 $aUNISA