LEADER 04586nam 22008295 450 001 996465664603316 005 20200703033443.0 010 $a3-540-45586-8 024 7 $a10.1007/3-540-45586-8 035 $a(CKB)1000000000211646 035 $a(SSID)ssj0000322012 035 $a(PQKBManifestationID)11277384 035 $a(PQKBTitleCode)TC0000322012 035 $a(PQKBWorkID)10280815 035 $a(PQKB)11754336 035 $a(DE-He213)978-3-540-45586-8 035 $a(MiAaPQ)EBC3073333 035 $a(PPN)155172352 035 $a(EXLCZ)991000000000211646 100 $a20121227d2001 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aComputational Combinatorial Optimization$b[electronic resource] $eOptimal or Provably Near-Optimal Solutions /$fedited by Michael Jünger, Denis Naddef 205 $a1st ed. 2001. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2001. 215 $a1 online resource (X, 310 p.) 225 1 $aLecture Notes in Computer Science,$x0302-9743 ;$v2241 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-42877-1 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aGeneral Mixed Integer Programming: Computational Issues for Branch-and-Cut Algorithms -- Projection and Lifting in Combinatorial Optimization -- Mathematical Programming Models and Formulations for Deterministic Production Planning Problems -- Lagrangian Relaxation -- Branch-and-Cut Algorithms for Combinatorial Optimization and Their Implementation in ABACUS -- Branch, Cut, and Price: Sequential and Parallel -- TSP Cuts Which Do Not Conform to the Template Paradigm. 330 $aThis tutorial contains written versions of seven lectures on Computational Combinatorial Optimization given by leading members of the optimization community. The lectures introduce modern combinatorial optimization techniques, with an emphasis on branch and cut algorithms and Lagrangian relaxation approaches. Polyhedral combinatorics as the mathematical backbone of successful algorithms are covered from many perspectives, in particular, polyhedral projection and lifting techniques and the importance of modeling are extensively discussed. Applications to prominent combinatorial optimization problems, e.g., in production and transport planning, are treated in many places; in particular, the book contains a state-of-the-art account of the most successful techniques for solving the traveling salesman problem to optimality. 410 0$aLecture Notes in Computer Science,$x0302-9743 ;$v2241 606 $aMathematical optimization 606 $aComputer science?Mathematics 606 $aAlgorithms 606 $aInformation technology 606 $aBusiness?Data processing 606 $aData structures (Computer science) 606 $aCombinatorics 606 $aOptimization$3https://scigraph.springernature.com/ontologies/product-market-codes/M26008 606 $aDiscrete Mathematics in Computer Science$3https://scigraph.springernature.com/ontologies/product-market-codes/I17028 606 $aAlgorithm Analysis and Problem Complexity$3https://scigraph.springernature.com/ontologies/product-market-codes/I16021 606 $aIT in Business$3https://scigraph.springernature.com/ontologies/product-market-codes/522000 606 $aData Structures$3https://scigraph.springernature.com/ontologies/product-market-codes/I15017 606 $aCombinatorics$3https://scigraph.springernature.com/ontologies/product-market-codes/M29010 615 0$aMathematical optimization. 615 0$aComputer science?Mathematics. 615 0$aAlgorithms. 615 0$aInformation technology. 615 0$aBusiness?Data processing. 615 0$aData structures (Computer science). 615 0$aCombinatorics. 615 14$aOptimization. 615 24$aDiscrete Mathematics in Computer Science. 615 24$aAlgorithm Analysis and Problem Complexity. 615 24$aIT in Business. 615 24$aData Structures. 615 24$aCombinatorics. 676 $a519.7 702 $aJünger$b Michael$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aNaddef$b Denis$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996465664603316 996 $aComputational combinatorial optimization$9972204 997 $aUNISA