LEADER 04654nam 22008055 450 001 996465483403316 005 20200705072736.0 010 $a3-319-49055-9 024 7 $a10.1007/978-3-319-49055-7 035 $a(CKB)3710000000981102 035 $a(DE-He213)978-3-319-49055-7 035 $a(MiAaPQ)EBC6285856 035 $a(MiAaPQ)EBC5592592 035 $a(Au-PeEL)EBL5592592 035 $a(OCoLC)962731638 035 $a(PPN)197137075 035 $a(EXLCZ)993710000000981102 100 $a20161104d2016 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStructural, Syntactic, and Statistical Pattern Recognition$b[electronic resource] $eJoint IAPR International Workshop, S+SSPR 2016, Mérida, Mexico, November 29 - December 2, 2016, Proceedings /$fedited by Antonio Robles-Kelly, Marco Loog, Battista Biggio, Francisco Escolano, Richard Wilson 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (XIII, 588 p. 167 illus.) 225 1 $aImage Processing, Computer Vision, Pattern Recognition, and Graphics ;$v10029 300 $aIncludes index. 311 $a3-319-49054-0 327 $aDimensionality reduction -- Manifold learning and embedding methods.-Dissimilarity representations -- Graph-theoretic methods -- Model selection, classification and clustering -- Semi and fully supervised learning methods -- Shape analysis -- Spatio-temporal pattern recognition -- Structural matching -- Text and document analysis. . 330 $aThis book constitutes the proceedings of the Joint IAPR International Workshop on Structural Syntactic, and Statistical Pattern Recognition, S+SSPR 2016, consisting of the International Workshop on Structural and Syntactic Pattern Recognition SSPR, and the International Workshop on Statistical Techniques in Pattern Recognition, SPR. The 51 full papers presented were carefully reviewed and selected from 68 submissions. They are organized in the following topical sections: dimensionality reduction, manifold learning and embedding methods; dissimilarity representations; graph-theoretic methods; model selection, classification and clustering; semi and fully supervised learning methods; shape analysis; spatio-temporal pattern recognition; structural matching; text and document analysis. . 410 0$aImage Processing, Computer Vision, Pattern Recognition, and Graphics ;$v10029 606 $aArtificial intelligence 606 $aPattern recognition 606 $aApplication software 606 $aDatabase management 606 $aAlgorithms 606 $aData mining 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 606 $aPattern Recognition$3https://scigraph.springernature.com/ontologies/product-market-codes/I2203X 606 $aInformation Systems Applications (incl. Internet)$3https://scigraph.springernature.com/ontologies/product-market-codes/I18040 606 $aDatabase Management$3https://scigraph.springernature.com/ontologies/product-market-codes/I18024 606 $aAlgorithm Analysis and Problem Complexity$3https://scigraph.springernature.com/ontologies/product-market-codes/I16021 606 $aData Mining and Knowledge Discovery$3https://scigraph.springernature.com/ontologies/product-market-codes/I18030 615 0$aArtificial intelligence. 615 0$aPattern recognition. 615 0$aApplication software. 615 0$aDatabase management. 615 0$aAlgorithms. 615 0$aData mining. 615 14$aArtificial Intelligence. 615 24$aPattern Recognition. 615 24$aInformation Systems Applications (incl. Internet). 615 24$aDatabase Management. 615 24$aAlgorithm Analysis and Problem Complexity. 615 24$aData Mining and Knowledge Discovery. 676 $a006.4 702 $aRobles-Kelly$b Antonio$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aLoog$b Marco$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aBiggio$b Battista$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aEscolano$b Francisco$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aWilson$b Richard$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996465483403316 996 $aStructural, Syntactic, and Statistical Pattern Recognition$9772717 997 $aUNISA