LEADER 04861nam 22008055 450 001 996465339003316 005 20230406022711.0 010 $a3-540-71067-1 024 7 $a10.1007/978-3-540-71067-7 035 $a(CKB)1000000000491029 035 $a(SSID)ssj0000446826 035 $a(PQKBManifestationID)11923952 035 $a(PQKBTitleCode)TC0000446826 035 $a(PQKBWorkID)10504653 035 $a(PQKB)11718418 035 $a(DE-He213)978-3-540-71067-7 035 $a(MiAaPQ)EBC3063672 035 $a(MiAaPQ)EBC6512616 035 $a(Au-PeEL)EBL6512616 035 $a(OCoLC)304563141 035 $a(PPN)130184888 035 $a(EXLCZ)991000000000491029 100 $a20100301d2008 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aTheorem Proving in Higher Order Logics$b[electronic resource] $e21st International Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008, Proceedings /$fedited by Otmane Ait Mohamed, César Munoz, Sofiène Tahar 205 $a1st ed. 2008. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2008. 215 $a1 online resource (X, 321 p.) 225 1 $aTheoretical Computer Science and General Issues,$x2512-2029 ;$v5170 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-71065-5 320 $aIncludes bibliographical references and index. 327 $aInvited Papers -- Twenty Years of Theorem Proving for HOLs Past, Present and Future -- Will This Be Formal? -- Tutorials -- A Short Presentation of Coq -- An ACL2 Tutorial -- A Brief Overview of PVS -- A Brief Overview of HOL4 -- The Isabelle Framework -- Regular Papers -- A Compiled Implementation of Normalization by Evaluation -- LCF-Style Propositional Simplification with BDDs and SAT Solvers -- Nominal Inversion Principles -- Canonical Big Operators -- A Type of Partial Recursive Functions -- Formal Reasoning About Causality Analysis -- Imperative Functional Programming with Isabelle/HOL -- HOL-Boogie ? An Interactive Prover for the Boogie Program-Verifier -- Secure Microkernels, State Monads and Scalable Refinement -- Certifying a Termination Criterion Based on Graphs, without Graphs -- Lightweight Separation -- Real Number Calculations and Theorem Proving -- A Formalized Theory for Verifying Stability and Convergence of Automata in PVS -- Certified Exact Transcendental Real Number Computation in Coq -- Formalizing Soundness of Contextual Effects -- First-Class Type Classes -- Formalizing a Framework for Dynamic Slicing of Program Dependence Graphs in Isabelle/HOL -- Proof Pearls -- Proof Pearl: Revisiting the Mini-rubik in Coq. 330 $aThis book constitutes the refereed proceedings of the 21st International Conference on Theorem Proving in Higher Order Logics, TPHOLs 2008, held in Montreal, Canada, in August 2008. The 17 revised full papers presented together with 1 proof pearl (concise and elegant presentations of interesting examples), 5 tool presentations, and 2 invited papers were carefully reviewed and selected from 40 submissions. The papers cover all aspects of theorem proving in higher order logics as well as related topics in theorem proving and verification such as formal semantics of specification, modeling, and programming languages, specification and verification of hardware and software, formalisation of mathematical theories, advances in theorem prover technology, as well as industrial application of theorem provers. 410 0$aTheoretical Computer Science and General Issues,$x2512-2029 ;$v5170 606 $aCompilers (Computer programs) 606 $aComputer systems 606 $aSoftware engineering 606 $aMachine theory 606 $aComputer science 606 $aCompilers and Interpreters 606 $aComputer System Implementation 606 $aSoftware Engineering 606 $aFormal Languages and Automata Theory 606 $aComputer Science Logic and Foundations of Programming 615 0$aCompilers (Computer programs). 615 0$aComputer systems. 615 0$aSoftware engineering. 615 0$aMachine theory. 615 0$aComputer science. 615 14$aCompilers and Interpreters. 615 24$aComputer System Implementation. 615 24$aSoftware Engineering. 615 24$aFormal Languages and Automata Theory. 615 24$aComputer Science Logic and Foundations of Programming. 676 $a004.015113 702 $aAit Mohamed$b Otmane 702 $aMun?oz$b Ce?sar A.$f1968- 702 $aTahar$b Sofie?ne$f1966- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996465339003316 996 $aTheorem Proving in Higher Order Logics$9772309 997 $aUNISA