LEADER 03458nam 2200517 450 001 996464400403316 005 20220423084214.0 010 $a3-658-34459-8 024 7 $a10.1007/978-3-658-34459-7 035 $a(CKB)4100000011996115 035 $a(DE-He213)978-3-658-34459-7 035 $a(MiAaPQ)EBC6695858 035 $a(Au-PeEL)EBL6695858 035 $a(PPN)257354468 035 $a(EXLCZ)994100000011996115 100 $a20220423d2021 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAlgorithms and architectures for cryptography and source coding in non-volatile flash memories /$fMalek Safieh 205 $a1st ed. 2021. 210 1$aWiesbaden, Germany :$cSpringer Vieweg,$d[2021] 210 4$d©2021 215 $a1 online resource (XVI, 142 p. 26 illus., 3 illus. in color.) 225 0 $aSchriftenreihe der Institute Fu?r Systemdynamik (ISD) und Optische Systeme (IOS),$x2661-8087 311 $a3-658-34458-X 327 $a1 Introduction -- 2 Elliptic curve cryptography -- 3 Elliptic curve cryptography over Gaussian integers -- 4 Montgomery arithmetic over Gaussian integers -- 5 Architecture of the ECC coprocessor for Gaussian integers -- 6 Compact architecture of the ECC coprocessor for binary extension fields -- 7 The parallel dictionary LZW algorithm for flash memory controllers -- 8 Conclusion. 330 $aIn this work, algorithms and architectures for cryptography and source coding are developed, which are suitable for many resource-constrained embedded systems such as non-volatile flash memories. A new concept for elliptic curve cryptography is presented, which uses an arithmetic over Gaussian integers. Gaussian integers are a subset of the complex numbers with integers as real and imaginary parts. Ordinary modular arithmetic over Gaussian integers is computational expensive. To reduce the complexity, a new arithmetic based on the Montgomery reduction is presented. For the elliptic curve point multiplication, this arithmetic over Gaussian integers improves the computational efficiency, the resistance against side channel attacks, and reduces the memory requirements. Furthermore, an efficient variant of the Lempel-Ziv-Welch (LZW) algorithm for universal lossless data compression is investigated. Instead of one LZW dictionary, this algorithm applies several dictionaries to speed up the encoding process. Two dictionary partitioning techniques are introduced that improve the compression rate and reduce the memory size of this parallel dictionary LZW algorithm. About the Author Malek Safieh is a research scientist in the field of cryptography and data compression. 410 0$aSchriftenreihe der Institute für Systemdynamik (ISD) und optische Systeme (IOS),$x2661-8095 606 $aCryptography 606 $aData encryption (Computer science) 606 $aRevision control (Computer science)$xMathematics 615 0$aCryptography. 615 0$aData encryption (Computer science) 615 0$aRevision control (Computer science)$xMathematics. 676 $a652.8 700 $aSafieh$b Malek$0849298 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996464400403316 996 $aAlgorithms and Architectures for Cryptography and Source Coding in Non-Volatile Flash Memories$91896775 997 $aUNISA