LEADER 03763nam 22006375 450 001 996418435903316 005 20200705190102.0 010 $a3-030-36361-9 024 7 $a10.1007/978-3-030-36361-1 035 $a(CKB)4940000000159047 035 $a(DE-He213)978-3-030-36361-1 035 $a(MiAaPQ)EBC6005115 035 $a(PPN)242842844 035 $a(EXLCZ)994940000000159047 100 $a20200102d2020 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGeometric Control of Fracture and Topological Metamaterials$b[electronic resource] /$fby Noah Mitchell 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (XIX, 121 p. 49 illus., 48 illus. in color.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 311 $a3-030-36360-0 327 $aChapter1: Introduction -- PartI: Gaussian Curvature as a Guide for Material Failure -- Chapter2: Fracture in sheets draped on curved surfaces -- Chapter3: Conforming nanoparticle sheets to surfaces with gaussian curvature -- PartII: Topological mechanics in gyroscopic metamaterials -- Chapter4: Realization of a topological phase transition in a gyroscopic lattice -- Chapter5: Tunable band topology in gyroscopic lattices -- Chapter6: Topological insulators constructed from random point sets -- Chapter7: Conclusions and outlook. 330 $aThis thesis reports a rare combination of experiment and theory on the role of geometry in materials science. It is built on two significant findings: that curvature can be used to guide crack paths in a predictive way, and that protected topological order can exist in amorphous materials. In each, the underlying geometry controls the elastic behavior of quasi-2D materials, enabling the control of crack propagation in elastic sheets and the control of unidirectional waves traveling at the boundary of metamaterials. The thesis examines the consequences of this geometric control in a range of materials spanning many orders of magnitude in length scale, from amorphous macroscopic networks and elastic continua to nanoscale lattices. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aSolid state physics 606 $aOptical materials 606 $aElectronic materials 606 $aPhysics 606 $aPhase transitions (Statistical physics) 606 $aSolid State Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P25013 606 $aOptical and Electronic Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z12000 606 $aMathematical Methods in Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19013 606 $aPhase Transitions and Multiphase Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P25099 615 0$aSolid state physics. 615 0$aOptical materials. 615 0$aElectronic materials. 615 0$aPhysics. 615 0$aPhase transitions (Statistical physics). 615 14$aSolid State Physics. 615 24$aOptical and Electronic Materials. 615 24$aMathematical Methods in Physics. 615 24$aPhase Transitions and Multiphase Systems. 676 $a620.11 700 $aMitchell$b Noah$4aut$4http://id.loc.gov/vocabulary/relators/aut$0842277 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996418435903316 996 $aGeometric Control of Fracture and Topological Metamaterials$91879830 997 $aUNISA