LEADER 03296nam 22005895 450 001 996418279303316 005 20200705005707.0 010 $a3-030-48788-1 024 7 $a10.1007/978-3-030-48788-1 035 $a(CKB)4100000011325546 035 $a(DE-He213)978-3-030-48788-1 035 $a(MiAaPQ)EBC6298275 035 $a(PPN)251095533 035 $a(EXLCZ)994100000011325546 100 $a20200701d2020 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBoundary Value Problems and Markov Processes$b[electronic resource] $eFunctional Analysis Methods for Markov Processes /$fby Kazuaki Taira 205 $a3rd ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (XVII, 502 p. 150 illus.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1499 311 $a3-030-48787-3 320 $aIncludes bibliographical references and index. 330 $aThis 3rd edition provides an insight into the mathematical crossroads formed by functional analysis (the macroscopic approach), partial differential equations (the mesoscopic approach) and probability (the microscopic approach) via the mathematics needed for the hard parts of Markov processes. It brings these three fields of analysis together, providing a comprehensive study of Markov processes from a broad perspective. The material is carefully and effectively explained, resulting in a surprisingly readable account of the subject. The main focus is on a powerful method for future research in elliptic boundary value problems and Markov processes via semigroups, the Boutet de Monvel calculus. A broad spectrum of readers will easily appreciate the stochastic intuition that this edition conveys. In fact, the book will provide a solid foundation for both researchers and graduate students in pure and applied mathematics interested in functional analysis, partial differential equations, Markov processes and the theory of pseudo-differential operators, a modern version of the classical potential theory. . 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1499 606 $aProbabilities 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aOperator theory 606 $aProbability Theory and Stochastic Processes$3https://scigraph.springernature.com/ontologies/product-market-codes/M27004 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 606 $aOperator Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M12139 615 0$aProbabilities. 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 0$aOperator theory. 615 14$aProbability Theory and Stochastic Processes. 615 24$aAnalysis. 615 24$aOperator Theory. 676 $a515.35 700 $aTaira$b Kazuaki$4aut$4http://id.loc.gov/vocabulary/relators/aut$059537 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996418279303316 996 $aBoundary value problems and Markov processes$978656 997 $aUNISA