LEADER 02428nam 22004695 450 001 996418278503316 005 20200813071510.0 010 $a3-030-32796-5 024 7 $a10.1007/978-3-030-32796-5 035 $a(CKB)4100000011343253 035 $a(DE-He213)978-3-030-32796-5 035 $a(MiAaPQ)EBC6263941 035 $a(PPN)25021802X 035 $a(EXLCZ)994100000011343253 100 $a20200713d2020 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAlgebra and Galois Theories$b[electronic resource] /$fby Régine Douady, Adrien Douady 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (XXIII, 462 p. 33 illus., 6 illus. in color.) 300 $aIncludes index. 311 $a3-030-32795-7 327 $aIntroduction -- Chapter 1. Zorn?s Lemma -- Chapter 2. Categories and Functors -- Chapter 3. Linear Algebra -- Chapter 4. Coverings -- Chapter 5. Galois Theory -- Chapter 6. Riemann Surfaces -- Chapter 7. Dessins d?Enfants -- Bibliography -- Index of Notation. 330 $aGalois theory has such close analogies with the theory of coverings that algebraists use a geometric language to speak of field extensions, while topologists speak of "Galois coverings". This book endeavors to develop these theories in a parallel way, starting with that of coverings, which better allows the reader to make images. The authors chose a plan that emphasizes this parallelism. The intention is to allow to transfer to the algebraic framework of Galois theory the geometric intuition that one can have in the context of coverings. This book is aimed at graduate students and mathematicians curious about a non-exclusively algebraic view of Galois theory. 606 $aAlgebra 606 $aAlgebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11000 615 0$aAlgebra. 615 14$aAlgebra. 676 $a512.32 700 $aDouady$b Régine$4aut$4http://id.loc.gov/vocabulary/relators/aut$046390 702 $aDouady$b Adrien$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996418278503316 996 $aAlgebra and Galois Theories$92377950 997 $aUNISA