LEADER 04181nam 22006375 450 001 996418273303316 005 20200702071103.0 010 $a3-642-27795-0 024 7 $a10.1007/978-3-642-27795-5 035 $a(CKB)3710000000306363 035 $a(DE-He213)978-3-642-27795-5 035 $a(PPN)242974546 035 $a(EXLCZ)993710000000306363 100 $a20190617d2020 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHandbook of Mathematical Methods in Imaging$b[electronic resource] /$fedited by Otmar Scherzer 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2020. 215 $a1 online resource (XVIII, 455 p. 150 illus.) 327 $aIntroduction -- Part 1: Inverse Problems -- Tomography -- MR DTI -- Hybrid Methods -- Nonlinear Inverse Problems -- EIT -- Scattering -- Sampling Methods -- Expansion Methods -- Regularization Methods for Ill-Posed Problems -- Iterative Solution Methods -- Wave Phenomena -- Seismic -- Radar -- Ultrasound -- Part 2: Signal and Image Processing -- Morphological Image Processing -- Learning, Classification, Data Mining -- Partial Differential Equations -- Variational Methods for Image Analysis -- Level Set Methods Including Fast Marching Methods -- Segmentation -- Registration, Optical Flow -- Duality and Convex Minimization -- Spline, Statistics -- Wavelets -- Fourier Analysis -- Compressed Sensing -- Geometry Processing -- Compression -- Computational Geometry -- Shape Spaces -- PDEs and Variational Methods on Manifold -- References -- Subject Index. 330 $aThe Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful. 606 $aApplied mathematics 606 $aEngineering mathematics 606 $aOptical data processing 606 $aSignal processing 606 $aImage processing 606 $aSpeech processing systems 606 $aNumerical analysis 606 $aRadiology 606 $aApplications of Mathematics$3https://scigraph.springernature.com/ontologies/product-market-codes/M13003 606 $aImage Processing and Computer Vision$3https://scigraph.springernature.com/ontologies/product-market-codes/I22021 606 $aSignal, Image and Speech Processing$3https://scigraph.springernature.com/ontologies/product-market-codes/T24051 606 $aNumerical Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M14050 606 $aImaging / Radiology$3https://scigraph.springernature.com/ontologies/product-market-codes/H29005 615 0$aApplied mathematics. 615 0$aEngineering mathematics. 615 0$aOptical data processing. 615 0$aSignal processing. 615 0$aImage processing. 615 0$aSpeech processing systems. 615 0$aNumerical analysis. 615 0$aRadiology. 615 14$aApplications of Mathematics. 615 24$aImage Processing and Computer Vision. 615 24$aSignal, Image and Speech Processing. 615 24$aNumerical Analysis. 615 24$aImaging / Radiology. 676 $a519 702 $aScherzer$b Otmar$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a996418273303316 996 $aHandbook of mathematical methods in imaging$91520292 997 $aUNISA