LEADER 04947nam 22007575 450 001 996418263103316 005 20200702031458.0 010 $a981-15-1611-1 024 7 $a10.1007/978-981-15-1611-5 035 $a(CKB)4100000010118940 035 $a(DE-He213)978-981-15-1611-5 035 $a(MiAaPQ)EBC6027278 035 $a(PPN)242843239 035 $a(EXLCZ)994100000010118940 100 $a20200117d2020 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aLeavitt Path Algebras and Classical K-Theory$b[electronic resource] /$fedited by A. A. Ambily, Roozbeh Hazrat, B. Sury 205 $a1st ed. 2020. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2020. 215 $a1 online resource (XV, 335 p. 17 illus., 1 illus. in color.) 225 1 $aIndian Statistical Institute Series,$x2523-3114 311 $a981-15-1610-3 327 $aChapter 1. Morita Equivalent Leavitt Path Algebras -- Chapter 2. A survey on the ideal structure of Leavitt path algebras -- Chapter 3. The injective and projective Leavitt complexes -- Chapter 4. Graph C*-algebras -- Chapter 5. Steinberg Algebras -- Chapter 6. Leavitt path algebras -- Chapter 7. Relating the principles of Quillen-Suslin theory -- Chapter 8. Action on Alternating matrices and Compound matrices -- Chapter 9. On the relative Quillen-Suslin Local Global Principle -- Chapter 10. On the non-injectivity of the Vaserstein symbol for real threefolds -- Chapter 11. The quotient Unimodular Vector group is nilpotent -- Chapter 12. Symplectic linearization of an alternating polynomial matrix -- Chapter 13. On a theorem of Suslin -- Chapter 14. On a group structure on unimodular rows of length three over a two dimensional ring -- Chapter 15. On an algebraic analogue of the Mayer-Vietoris sequence -- Chapter 16. On the completability of unimodular rows of length three -- Chapter 17. Sandwich classification for classical-like groups over commutative rings -- Chapter 18. A Survey on applications of K-theory in affine algebraic geometry -- Chapter 19. On the non-infectivity of the Vaserstein Symbol in dimension three -- Chapter 20. A survey on affine monoids and K-theory -- Chapter 21. A Survey on the elementary orthogonal groups. 330 $aThe book offers a comprehensive introduction to Leavitt path algebras (LPAs) and graph C*-algebras. Highlighting their significant connection with classical K-theory?which plays an important role in mathematics and its related emerging fields?this book allows readers from diverse mathematical backgrounds to understand and appreciate these structures. The articles on LPAs are mostly of an expository nature and the ones dealing with K-theory provide new proofs and are accessible to interested students and beginners of the field. It is a useful resource for graduate students and researchers working in this field and related areas, such as C*-algebras and symbolic dynamics. 410 0$aIndian Statistical Institute Series,$x2523-3114 606 $aK-theory 606 $aNonassociative rings 606 $aRings (Algebra) 606 $aGroup theory 606 $aCommutative algebra 606 $aCommutative rings 606 $aCategory theory (Mathematics) 606 $aHomological algebra 606 $aK-Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M11086 606 $aNon-associative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11116 606 $aGroup Theory and Generalizations$3https://scigraph.springernature.com/ontologies/product-market-codes/M11078 606 $aCommutative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11043 606 $aCategory Theory, Homological Algebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11035 615 0$aK-theory. 615 0$aNonassociative rings. 615 0$aRings (Algebra). 615 0$aGroup theory. 615 0$aCommutative algebra. 615 0$aCommutative rings. 615 0$aCategory theory (Mathematics). 615 0$aHomological algebra. 615 14$aK-Theory. 615 24$aNon-associative Rings and Algebras. 615 24$aGroup Theory and Generalizations. 615 24$aCommutative Rings and Algebras. 615 24$aCategory Theory, Homological Algebra. 676 $a512.55 702 $aAmbily$b A. A$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aHazrat$b Roozbeh$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aSury$b B$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996418263103316 996 $aLeavitt Path Algebras and Classical K-Theory$92079534 997 $aUNISA