LEADER 03591oam 2200481 450 001 996418193203316 005 20210505192246.0 010 $a3-030-56409-6 024 7 $a10.1007/978-3-030-56409-4 035 $a(CKB)4100000011610161 035 $a(MiAaPQ)EBC6404797 035 $a(DE-He213)978-3-030-56409-4 035 $a(PPN)25251002X 035 $a(EXLCZ)994100000011610161 100 $a20210505d2020 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aFrontiers in analysis and probability $ein the spirit of the Strasbourg-Zürich meetings /$fNalini Anantharaman, Ashkan Nikeghbali, Michael Th. Rassias, editors 205 $a1st ed. 2020. 210 1$aCham, Switzerland :$cSpringer,$d[2020] 210 4$d©2020 215 $a1 online resource (VII, 449 p. 31 illus., 17 illus. in color.) 311 $a3-030-56408-8 327 $aMonochromatic Random Waves for general Riemannian manifolds (Canzani) -- A Brief Review of the ?ETH- Approach to Quantum Mechanics? (Fröhlich) -- Linear and non-linear harmonic boundaries of graphs; an approach with ?p-cohomology in degree one (Gournay) -- Polyharmonic functions for finite graphs and Markov chains (Hirschler) -- Interacting electrons in a random medium: a simple one-dimensional model (Klopp) -- Entropies for negatively curved manifolds (Ledrappie)- Two-dimensional quantum Yang-Mills theory and the Makeenko-Migdal equations (Lévy) -- Limit operators for circular ensembles (Maples) -- Gibbs measures of nonlinear Schrödinger equations as limits of quantum many-body states in dimension d ? 3 (Sohinger) -- Interfaces in spectral asymptotics and nodal sets (Zelditch). 330 $aThe volume presents extensive research devoted to a broad spectrum of mathematical analysis and probability theory. Subjects discussed in this Work are those treated in the so-called Strasbourg?Zürich Meetings. These meetings occur twice yearly in each of the cities, Strasbourg and Zürich, venues of vibrant mathematical communication and worldwide gatherings. The topical scope of the book includes the study of monochromatic random waves defined for general Riemannian manifolds, notions of entropy related to a compact manifold of negative curvature, interacting electrons in a random background, lp-cohomology (in degree one) of a graph and its connections with other topics, limit operators for circular ensembles, polyharmonic functions for finite graphs and Markov chains, the ETH-Approach to Quantum Mechanics, 2-dimensional quantum Yang?Mills theory, Gibbs measures of nonlinear Schrödinger equations, interfaces in spectral asymptotics and nodal sets. Contributions in this Work are composed by experts from the international community, who have presented the state-of-the-art research in the corresponding problems treated. This volume is expected to be a valuable resource to both graduate students and research mathematicians working in analysis, probability as well as their interconnections and applications. 606 $aMathematical analysis 606 $aProbabilities 615 0$aMathematical analysis. 615 0$aProbabilities. 676 $a515 702 $aAnantharaman$b Nalini 702 $aNikeghbali$b Ashkan 702 $aRassias$b Michael Th.$f1987- 801 0$bCaPaEBR 801 1$bCaPaEBR 801 2$bUtOrBLW 906 $aBOOK 912 $a996418193203316 996 $aFrontiers in analysis and probability$92018985 997 $aUNISA LEADER 01254nam a2200373 i 4500 001 991001070979707536 005 20020507182655.0 008 960423s1978 de ||| | eng 020 $a3540088520 035 $ab10796885-39ule_inst 035 $aLE01306580$9ExL 040 $aDip.to Matematica$beng 082 0 $a516.35 084 $aAMS 14-02 084 $aAMS 14-XX 084 $aAMS 14E35 084 $aAMS 14K20 100 1 $aOda, Tadao$0104472 245 10$aLectures on torus embeddings and applications /$cby Tadao Oda ; based on joint work with Katsuya Miyake 260 $aBerlin :$bSpringer-Verlag,$c1978 300 $axi, 175 p. ;$c26 cm. 490 0 $aLectures on mathematics and physics. Mathematics ;$v58 500 $aBibliography: p. 169-175 650 4$aAlgebraic geometry 650 4$aCones 650 4$aEmbeddings 650 4$aTorus 700 1 $aMiyake, Katsuya 907 $a.b10796885$b23-02-17$c28-06-02 912 $a991001070979707536 945 $aLE013 14-XX ODA12 (1978)$g1$i2013000046563$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10898396$z28-06-02 996 $aLectures on torus embeddings and applications$9921611 997 $aUNISALENTO 998 $ale013$b01-01-96$cm$da $e-$feng$gde $h0$i1