LEADER 02093oam 2200457 450 001 996418189303316 005 20210617090105.0 010 $a3-030-52784-0 024 7 $a10.1007/978-3-030-52784-6 035 $a(CKB)5280000000246100 035 $a(DE-He213)978-3-030-52784-6 035 $a(MiAaPQ)EBC6455838 035 $a(PPN)252508688 035 $a(EXLCZ)995280000000246100 100 $a20210617d2020 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntroduction to functional analysis /$fChristian Clason 205 $a1st ed. 2020. 210 1$aCham, Switzerland :$cBirkhäuser,$d[2020] 210 4$d©2020 215 $a1 online resource (X, 170 p. 1 illus.) 225 1 $aCompact textbooks in mathematics 311 $a3-030-52783-2 327 $aTopological basics -- Linear operators between normed spaces -- Dual spaces and weak convergence -- Compact operators between Banach spaces -- Hilbert spaces. 330 $aFunctional analysis has become one of the essential foundations of modern applied mathematics in the last decades, from the theory and numerical solution of differential equations, from optimization and probability theory to medical imaging and mathematical image processing. This textbook offers a compact introduction to the theory and is designed to be used during one semester, fitting exactly 26 lectures of 90 minutes each. It ranges from the topological fundamentals recalled from basic lectures on real analysis to spectral theory in Hilbert spaces. Special attention is given to the central results on dual spaces and weak convergence. 410 0$aCompact textbooks in mathematics. 606 $aFunctional analysis 615 0$aFunctional analysis. 676 $a515.7 700 $aClason$b Christian$01065688 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bUtOrBLW 906 $aBOOK 912 $a996418189303316 996 $aIntroduction to functional analysis$92547515 997 $aUNISA