LEADER 04108nam 22007335 450 001 996418170803316 005 20200706101320.0 010 $a981-15-2471-8 024 7 $a10.1007/978-981-15-2471-4 035 $a(CKB)4100000010770877 035 $a(DE-He213)978-981-15-2471-4 035 $a(MiAaPQ)EBC6134182 035 $a(PPN)243226578 035 $a(EXLCZ)994100000010770877 100 $a20200314d2020 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe Amazing World of Quantum Computing$b[electronic resource] /$fby Rajendra K. Bera 205 $a1st ed. 2020. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2020. 215 $a1 online resource (XVII, 265 p. 28 illus., 7 illus. in color.) 225 1 $aUndergraduate Lecture Notes in Physics,$x2192-4791 311 $a981-15-2470-X 327 $a1. Quantum Cryptography & Quantum Teleportation -- 2. A Quick Comparison of Quantum & Classical Mechanics -- 3. The Birth and Coming of Age of Quantum Mechanics -- 4. Laws of Quantum Mechanics -- 5. Weirdness of Quantum Mechanics -- 6. Mathematical Elements Needed to Compute -- 7. Some Mathematical Consequences of the Postulates -- 8. Waves and Fourier Analysis -- 9. Getting the Hang of Measurement -- 10. Quantum Gates -- 11. Unusual Solutions of Usual Problems -- 12. Fundamental Limits to Computing -- 13. The Crown Jewels among Quantum Algorithms -- 14. Quantum Error Corrections -- 15. Time-Multiplexed Interpretation of Measurement -- 16. Quantum Computing and Social Responsibility. 330 $aThis book discusses the application of quantum mechanics to computing. It explains the fundamental concepts of quantum mechanics and then goes on to discuss various elements of mathematics required for quantum computing. Quantum cryptography, waves and Fourier analysis, measuring quantum systems, comparison to classical mechanics, quantum gates, and important algorithms in quantum computing are among the topics covered. The book offers a valuable resource for graduate and senior undergraduate students in STEM (science, technology, engineering, and mathematics) fields with an interest in designing quantum algorithms. Readers are expected to have a firm grasp of linear algebra and some familiarity with Fourier analysis. . 410 0$aUndergraduate Lecture Notes in Physics,$x2192-4791 606 $aQuantum computers 606 $aAlgorithms 606 $aMechanics 606 $aQuantum physics 606 $aQuantum field theory 606 $aString theory 606 $aFourier analysis 606 $aQuantum Computing$3https://scigraph.springernature.com/ontologies/product-market-codes/M14070 606 $aAlgorithms$3https://scigraph.springernature.com/ontologies/product-market-codes/M14018 606 $aClassical Mechanics$3https://scigraph.springernature.com/ontologies/product-market-codes/P21018 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 606 $aQuantum Field Theories, String Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P19048 606 $aFourier Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12058 615 0$aQuantum computers. 615 0$aAlgorithms. 615 0$aMechanics. 615 0$aQuantum physics. 615 0$aQuantum field theory. 615 0$aString theory. 615 0$aFourier analysis. 615 14$aQuantum Computing. 615 24$aAlgorithms. 615 24$aClassical Mechanics. 615 24$aQuantum Physics. 615 24$aQuantum Field Theories, String Theory. 615 24$aFourier Analysis. 676 $a006.3843 700 $aBera$b Rajendra K$4aut$4http://id.loc.gov/vocabulary/relators/aut$0935381 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996418170803316 996 $aThe Amazing World of Quantum Computing$92106935 997 $aUNISA