LEADER 01654nas 2200505-a 450 001 996417438303316 005 20230222213018.0 011 $a2200-7121 035 $a(DE-599)ZDB2424774-1 035 $a(OCoLC)60615840 035 $a(CKB)110978984567045 035 $a(CONSER)--2009267116 035 $a(EXLCZ)99110978984567045 100 $a20050614a19949999 s-- - 101 0 $aeng 135 $aurun||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aLaw, text, culture 210 $aWollongong, NSW, Australia $cUniversity of Wollongong 300 $aRefereed/Peer-reviewed 300 $aRefereed/Peer-reviewed 300 $a"A journal committed to producing intersections of the law, textuality and all aspects of culture." 311 $a1322-9060 517 1 $aLTC 606 $aLaw and literature$vPeriodicals 606 $aLaw$xInterpretation and construction$vPeriodicals 606 $aCulture and law$vPeriodicals 606 $aCulture and law$2fast$3(OCoLC)fst00885095 606 $aLaw and literature$2fast$3(OCoLC)fst00993913 606 $aLaw$xInterpretation and construction$2fast$3(OCoLC)fst00993756 608 $aPeriodicals.$2fast 608 $aPeriodicals.$2lcgft 615 0$aLaw and literature 615 0$aLaw$xInterpretation and construction 615 0$aCulture and law 615 7$aCulture and law. 615 7$aLaw and literature. 615 7$aLaw$xInterpretation and construction. 676 $a306.25099405 906 $aJOURNAL 912 $a996417438303316 996 $aLaw, text, culture$92106701 997 $aUNISA LEADER 01327nam a2200337 i 4500 001 991001348109707536 005 20020507191829.0 008 950608s1982 uk ||| | eng 020 $a0521233984 035 $ab10835064-39ule_inst 035 $aLE01310906$9ExL 040 $aDip.to Matematica$beng 082 0 $a516.35 084 $aAMS 58C27 084 $aQA564 100 1 $aMartinet, Jean$0536817 245 10$aSingularities of smooth functions and maps /$cJean Martinet ; translated by Carl P. Simon 260 $aCambridge [Cambridgeshire] :$bCambridge University Press,$c1982 300 $axiii, 256 p. :$bill. ;$c23 cm 490 0 $aLondon Mathematical Society lecture note series,$x0076-0552 ;$v58 500 $aBibliography: p. 249-251 500 $aIncludes index 650 0$aDifferentiable mappings 650 0$aSingularities 907 $a.b10835064$b23-02-17$c28-06-02 912 $a991001348109707536 945 $aLE013 58C MAR11 C.2 (1982)$g2$i2013000029825$lle013$o-$pE0.00$q-$rl$s- $t0$u3$v6$w3$x0$y.i1094445x$z28-06-02 945 $aLE013 58C MAR11 C.1 (1982)$g1$i2013000032740$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10944461$z28-06-02 996 $aSingularities of smooth functions and maps$9923964 997 $aUNISALENTO 998 $ale013$b01-01-95$cm$da $e-$feng$guk $h0$i2 LEADER 03725nam 22006015 450 001 9910512178803321 005 20251113201559.0 010 $a3-030-76705-1 024 7 $a10.1007/978-3-030-76705-1 035 $a(MiAaPQ)EBC6820592 035 $a(Au-PeEL)EBL6820592 035 $a(CKB)19968512200041 035 $a(PPN)269153306 035 $a(OCoLC)1287103571 035 $a(DE-He213)978-3-030-76705-1 035 $a(EXLCZ)9919968512200041 100 $a20211201d2021 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHolomorphic Foliations with Singularities $eKey Concepts and Modern Results /$fby Bruno Scárdua 205 $a1st ed. 2021. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2021. 215 $a1 online resource (172 pages) 225 1 $aLatin American Mathematics Series,$x2524-6763 311 08$aPrint version: Scárdua, Bruno Holomorphic Foliations with Singularities Cham : Springer International Publishing AG,c2022 9783030767044 320 $aIncludes bibliographical references and index. 327 $aPreface -- The Classical Notions of Foliations -- Some Results from Several Complex Variables -- Holomorphic Foliations: Nonsingular Case -- Holomorphic Foliations with Singularities -- Holomorphic Foliations Given by Closed 1-Forms -- Reduction of Singularities -- Holomorphic First Integrals -- Dynamics of a Local Diffeomorphism -- Foliations on Complex Projective Spaces -- Foliations with Algebraic Limit Sets -- Some Modern Questions -- Miscellaneous exercises and some open questions. 330 $aThis concise textbook gathers together key concepts and modern results on the theory of holomorphic foliations with singularities, offering a compelling vision on how the notion of foliation, usually linked to real functions and manifolds, can have an important role in the holomorphic world, as shown by modern results from mathematicians as H. Cartan, K. Oka, T. Nishino, and M. Suzuki. The text starts with a gentle presentation of the classical notion of foliations, advancing to holomorphic foliations and then holomorphic foliations with singularities. The theory behind reduction of singularities is described in detail, as well the cases for dynamics of a local diffeomorphism and foliations on complex projective spaces. A final chapter brings recent questions in the field, as holomorphic flows on Stein spaces and transversely homogeneous holomorphic foliations, along with a list of open questions for further study and research. Selected exercises at the end of each chapter help the reader to grasp the theory. Graduate students in Mathematics with a special interest in the theory of foliations will especially benefit from this book, which can be used as supplementary reading in Singularity Theory courses, and as a resource for independent study on this vibrant field of research. 410 0$aLatin American Mathematics Series,$x2524-6763 606 $aGeometry, Algebraic 606 $aDynamics 606 $aAlgebraic topology 606 $aAlgebraic Geometry 606 $aDynamical Systems 606 $aAlgebraic Topology 615 0$aGeometry, Algebraic. 615 0$aDynamics. 615 0$aAlgebraic topology. 615 14$aAlgebraic Geometry. 615 24$aDynamical Systems. 615 24$aAlgebraic Topology. 676 $a514.72 700 $aSca?rdua$b Bruno$01069092 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910512178803321 996 $aHolomorphic Foliations with Singularities$92554619 997 $aUNINA