LEADER 01557nam 2200385Ia 450 001 996395827003316 005 20200824125303.0 035 $a(CKB)4330000000317256 035 $a(EEBO)2240937506 035 $a(OCoLC)ocm22485521e 035 $a(OCoLC)22485521 035 $a(EXLCZ)994330000000317256 100 $a19901010d1626 uy | 101 0 $alat 135 $aurbn||||a|bb| 200 10$aDe sabbaticorum annorum periodis chronologica a mundi exordio ad nostra usque secula et porro digestio$b[electronic resource] /$fper Robertum Pontanum .. 210 $aLondini $cExcusum per Gulielmum Iones, pro Mi. Sparke$dMDCXXVI [1626] 215 $a[16], 203 p 300 $aSignatures: [par.]? A-2C? 2D². 300 $aCaption title: Chronologia de sabbatariorum annorum periodis. 300 $a"A more ample version of the author's A newe treatise of the right reckoning of yeares and ages of the world"--NUC pre-1956 imprints. 300 $aNumerous errors in paging. 300 $aImperfect: signature Z (p. 169-176) lacking; t.p. cropped, with slight loss of print. 300 $aReproduction of original in the British Library. 330 $aeebo-0018 606 $aChronology$vEarly works to 1800 615 0$aChronology 700 $aPont$b Robert$f1524-1606.$01002476 801 0$bEBK 801 1$bEBK 801 2$bWaOLN 906 $aBOOK 912 $a996395827003316 996 $aDe sabbaticorum annorum periodis chronologica a mundi exordio ad nostra usque secula et porro digestio$92300882 997 $aUNISA LEADER 00918nam a22002291i 4500 001 991002880429707536 005 20030814131012.0 008 030925s1910 it |||||||||||||||||ita 035 $ab12350059-39ule_inst 035 $aARCHE-039759$9ExL 040 $aBiblioteca Interfacoltà$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 100 1 $aMaggiulli, Luigi$074066 245 10$aCenni biografici del prof. Diodato Rao di Miggiano /$cper Luigi Maggiulli 260 $aMatino :$bTip. D. Sera,$c1910 300 $a1 v. ;$c28 cm 650 4$aRao, Diodato 907 $a.b12350059$b02-04-14$c08-10-03 912 $a991002880429707536 945 $aLE002 Busta A 38/30 (Fondo Guerrieri)$g1$i2002000113399$lle002$o-$pE0.00$q-$rn$so $t0$u0$v0$w0$x0$y.i12753798$z08-10-03 996 $aCenni biografici del prof. Diodato Rao di Miggiano$9158743 997 $aUNISALENTO 998 $ale002$b08-10-03$cm$da $e-$fita$git $h0$i1 LEADER 00765nam a2200229 i 4500 001 991001637979707536 005 20020502203438.0 008 950403s1994 uk ||| | eng 035 $ab11542093-39ule_inst 035 $aPRUMB64917$9ExL 040 $aDip. SSSC - DIDATTICA$bita 100 1 $aMortimer, John$0339615 245 10$aUnder the hammer /$cJohn Mortimer 260 $aLondon :$bPenguin,$cc1994 300 $a252 p. ;$c18 cm. 490 0 $aPenguin books 907 $a.b11542093$b01-03-17$c01-07-02 912 $a991001637979707536 945 $aLE021 FH7D45$g1$iLE021N-11833$lle021$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i11741144$z01-07-02 996 $aUnder the hammer$9815707 997 $aUNISALENTO 998 $ale021$b01-01-95$cm$da $e-$feng$guk $h0$i1 LEADER 05742nam 2200805Ia 450 001 9910139726403321 005 20200520144314.0 010 $a9786613298751 010 $a9781283298759 010 $a1283298759 010 $a9781118033234 010 $a111803323X 010 $a9781118031490 010 $a1118031490 035 $a(CKB)2550000000055645 035 $a(EBL)818700 035 $a(OCoLC)769342428 035 $a(SSID)ssj0000622263 035 $a(PQKBManifestationID)12246677 035 $a(PQKBTitleCode)TC0000622263 035 $a(PQKBWorkID)10637280 035 $a(PQKB)10412900 035 $a(SSID)ssj0000634232 035 $a(PQKBManifestationID)11359598 035 $a(PQKBTitleCode)TC0000634232 035 $a(PQKBWorkID)10640171 035 $a(PQKB)10707796 035 $a(MiAaPQ)EBC818700 035 $a(PPN)169718727 035 $a(Perlego)2757727 035 $a(EXLCZ)992550000000055645 100 $a20101005d1988 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aDifferential and integral calculus$hVolume 1 /$fby R. Courant ; translated by E.J. McShane 205 $a2nd ed. 210 $aHoboken, NJ $cWiley$d1988 215 $a1 online resource (634 p.) 225 1 $aWiley classics library 300 $aTranslation of: Vorlesungen uber Differential- und Integralrechnung. 300 $aIncludes index. 311 08$a9780471608424 311 08$a0471608424 311 08$a9780471178538 311 08$a0471178535 327 $aDifferential and Integral Calculus; CONTENTS; Introductory Remarks; Chapter I INTRODUCTION; 1. The Continuum of Numbers; 2. The Concept of Function; 3. More Detailed Study of the Elementary Functions; 4. Functions of an Integral Variable. Sequences of Numbers; 5. The Concept of the Limit of a Sequence; 6. Further Discussion of the Concept of Limit; 7. The Concept of Limit where the Variable is Continuous; 8. The Concept of Continuity; APPENDIX I; Preliminary Remarks; 1. The Principle of the Point of Accumulation and its Applications; 2. Theorems on Continuous Functions 327 $a3. Some Remarks on the Elementary FunctionsAPPENDIX II; 1. Polar Co-ordinates; 2. Remarks on Complex Numbers; Chapter II THE FUNDAMENTAL IDEAS OF THE INTEGRAL AND DIFFERENTIAL CALCULUS; 1. The Definite Integral; 2. Examples; 3. The Derivative; 4. The Indefinite Integral, the Primitive Function, and the Fundamental Theorems of the Differential and Integral Calculus; 5. Simple Methods of Graphical Integration; 6. Further Remarks on the Connexion between the Integral and the Derivative; 7. The Estimation of Integrals and the Mean Value Theorem of the Integral Calculus; APPENDIX 327 $a1. The Existence of the Definite Integral of a Continuous Function2. The Relation between the Mean Value Theorem of the Differential Calculus and the Mean Value Theorem of the Integral Calculus; Chapter III DIFFERENTIATION AND INTEGRATION OF THE ELEMENTARY FUNCTIONS; 1. The Simplest Rules for Differentiation and their Applications; 2. The Corresponding Integral Formulae; 3. The Inverse Function and its Derivative; 4. Differentiation of a Function of a Function; 5. Maxima and Minima; 6. The Logarithm and the Exponential Function; 7. Some Applications of the Exponential Function 327 $a8. The Hyperbolic Functions9. The Order of Magnitude of Functions; APPENDIX; 1. Some Special Functions; 2. Remarks on the Differentiability of Functions; 3. Some Special Formulae; Chapter IV FURTHER DEVELOPMENT OF THE INTEGRAL CALCULUS; 1. Elementary Integrals; 2. The Method of Substitution; 3. Further Examples of the Substitution Method; 4. Integration by Parts; 5. Integration of Rational Functions; 6. Integration of Some Other Classes of Functions; 7. Remarks on Functions which are not Integrable in Terms of Elementary Functions; 8. Extension of the Concept of Integral. Improper Integrals 327 $aAPPENDIXThe Second Mean Value Theorem of the Integral Calculus; Chapter V APPLICATIONS; 1. Representation of Curves; 2. Applications to the Theory of Plane Curves; 3. Examples; 4. Some very Simple Problems in the Mechanics of a Particle; 6. Work; APPENDIX; 1. Properties of the Evolute; 2. Areas bounded by Closed Curves; Chapter VI TAYLOR'S THEOREM AND THE APPROXIMATE EXPRESSION OF FUNCTIONS BY POLYNOMIALS; 1. The Logarithm and the Inverse Tangent; 2. Taylor's Theorem; 3. Applications. Expansions of the Elementary Functions; 4. Geometrical Applications; APPENDIX 327 $a1. Example of a Function which cannot be expanded in a Taylor Series 330 $a "This is the perfect solid-as-they-come, timeless book on the calculus, and most likely it will never be surpassed in this domain." -Amazon ReviewThis book is intended for anyone who, having passed through an ordinary course of school mathematics, wishes to apply himself to the study of mathematics or its applications to science and engineering, no matter whether he is a student of a university or technical college, a teacher, or an engineer. Courant leads the way straight to useful knowledge, and aims at making the subject easier to grasp, not only by giving proofs step by step 410 0$aWiley classics library. 606 $aCalculus 606 $aDifferential calculus 615 0$aCalculus. 615 0$aDifferential calculus. 676 $a515 700 $aCourant$b Richard$f1888-1972.$0447721 701 $aMcShane$b E. J$g(Edward James),$f1904-$041778 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910139726403321 996 $aDifferential and integral calculus$91910728 997 $aUNINA