LEADER 05158nam 2200637 450 001 9910132239103321 005 20200520144314.0 010 $a3-527-67316-4 010 $a3-527-67314-8 010 $a3-527-67317-2 035 $a(CKB)3710000000090045 035 $a(EBL)1637067 035 $a(SSID)ssj0001160562 035 $a(PQKBManifestationID)11776794 035 $a(PQKBTitleCode)TC0001160562 035 $a(PQKBWorkID)11121414 035 $a(PQKB)11594841 035 $a(MiAaPQ)EBC1637067 035 $a(Au-PeEL)EBL1637067 035 $a(CaPaEBR)ebr10839224 035 $a(CaONFJC)MIL578629 035 $a(OCoLC)870951088 035 $a(PPN)221730583 035 $a(EXLCZ)993710000000090045 100 $a20140301h20142014 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aImplantable bioelectronics /$fedited by Evgeny Katz 210 1$aWeinheim, Germany :$cWiley-VCH,$d[2014] 210 4$dİ2014 215 $a1 online resource (473 p.) 300 $aDescription based upon print version of record. 311 $a3-527-33525-0 320 $aIncludes bibliographical references and index. 327 $aImplantable Bioelectronics; Contents; Preface; List of Contributors; Chapter 1 Implantable Bioelectronics - Editorial Introduction; References; Chapter 2 Magnetically Functionalized Cells: Fabrication, Characterization, and Biomedical Applications; 2.1 Introduction; 2.2 Magnetic Microbial Cells; 2.2.1 Direct Deposition of MNPs onto Microbial Cells; 2.2.2 Polymer-Mediated Deposition of MNPs onto Microbial Cells; 2.2.2.1 Layer-by-Layer Magnetic Functionalization of Microbial Cells; 2.2.2.2 Single-step Polymer-mediated Magnetic Functionalization of Microbial Cells 327 $a2.2.3 Applications of Magnetically Modified Microbial Cells2.2.3.1 Biosorbents and Biocatalysts; 2.2.3.2 Whole-Cell Biosensors and Microfluidic Devices; 2.2.3.3 Remotely Controlled Organisms; 2.3 Magnetic Labeling of Mammal (Human) Cells; 2.3.1 Intracellular Labeling of Cells; 2.3.1.1 Labeling with Anionic Magnetic Nanoparticles; 2.3.1.2 Labeling with Cationic Magnetic Nanoparticles; 2.3.2 Extracellular Labeling of Cells; 2.3.3 Applications of Magnetically Labeled Cells in Biomedicine; 2.3.3.1 MRI Imaging of MNPs-Labeled Cells; 2.3.3.2 MNPs-Mediated Cell Delivery and Tissue Engineering 327 $a2.4 ConclusionAcknowledgment; References; Chapter 3 Untethered Insect Interfaces; 3.1 Introduction; 3.2 Systems for Tetherless Insect Flight Control; 3.2.1 Various Approaches to Tetherless Flight Control; 3.2.2 Neurostimulation for Initiation of Wing Oscillations; 3.2.3 Extracellular Stimulation of the Muscles to Elicit Turns; 3.3 Implantable Bioelectronics in Insects; 3.3.1 Example: Insertion of Flexible Substrates into the Developing Eye; 3.4 Conclusions; References; Chapter 4 Miniaturized Biomedical Implantable Devices; 4.1 Introduction 327 $a4.2 Energy Harvesting as a Pathway to Miniaturization4.3 Implementation of Implantable Devices; 4.3.1 RF Power Harvesting; 4.3.1.1 Matching Network; 4.3.1.2 Rectifier; 4.3.1.3 Regulator and Bandgap Reference; 4.3.1.4 Low-Power Controller and Auxiliary Circuits in the Implant Functional Block; 4.3.2 Wireless Communication Link; 4.3.2.1 Forward Data Link; 4.3.2.2 Reverse Data Link; 4.3.3 Payload and Applications: Locomotive Implant and Implantable Cardiac Probe; 4.3.3.1 Actuation for Therapeutics: Millimeter-Sized Wirelessly Powered and Remotely Controlled Locomotive Implant 327 $a4.3.3.2 Low-Power Sensing for Diagnostics: Implantable Intracardiac Probe4.4 Conclusion; References; Chapter 5 Cross-Hierarchy Design Exploration for Implantable Electronics; 5.1 Introduction; 5.2 System Overview of a Generic Bioelectronic Implant; 5.3 Circuit Design for Low-Power Signal Processing; 5.3.1 Design Challenges for Low-Power Bioelectronic Sensor Interface; 5.3.2 Analog Signal Processing Using Subthreshold Circuits; 5.3.3 Analog-to-Digital Conversion; 5.3.4 Low-Power Digital Signal Processing; 5.3.4.1 VDD Scaling and Parallel Processing 327 $a5.3.4.2 Dynamic Voltage and Frequency Scaling 330 $aHere the renowned editor Evgeny Katz has chosen contributions that cover a wide range of examples and issues in implantable bioelectronics, resulting in an excellent overview of the topic. The various implants covered include biosensoric and prosthetic devices, as well as neural and brain implants, while ethical issues, suitable materials, biocompatibility, and energy-harvesting devices are also discussed.A must-have for both newcomers and established researchers in this interdisciplinary field that connects scientists from chemistry, material science, biology, medicine, and electrical eng 606 $aBioelectronics 606 $aMedical electronics 615 0$aBioelectronics. 615 0$aMedical electronics. 701 $aKatz$b Evgeny$0891450 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910132239103321 996 $aImplantable bioelectronics$92034118 997 $aUNINA LEADER 01272nam 2200349 n 450 001 996394985903316 005 20221102114245.0 035 $a(CKB)3810000000009154 035 $a(EEBO)2240917835 035 $a(UnM)99827767 035 $a(UnM)9927754500971 035 $a(EXLCZ)993810000000009154 100 $a19950311d1677 uy | 101 0 $aeng 135 $aurbn||||a|bb| 200 14$aThe distressed pilgrim$b[electronic resource] $ewho being in much misery, he serves the Lord most faithfully: and repenteth for the things are past, and prayes for a heavenly place at last. The tune is, Who can blame my vvoe; or, I am a jovial batchelor 210 $aLondon $cprinted for W. Thackeray, T. Passenger, and W. Whitwood$d[1677] 215 $a1 sheet ([1] p.) $cill 300 $aVerse - "I am a pilgrim poor and bare,". 300 $aPublication estimated by Wing as 1670-1677. 300 $aReproduction of the original in the British Library. 330 $aeebo-0018 606 $aBallads, English$y17th century 615 0$aBallads, English 801 0$bCu-RivES 801 1$bCu-RivES 801 2$bCStRLIN 801 2$bWaOLN 906 $aBOOK 912 $a996394985903316 996 $aThe distressed pilgrim$92348363 997 $aUNISA