LEADER 01327nam 2200385 n 450 001 996394961803316 005 20221108024456.0 035 $a(CKB)3810000000013703 035 $a(EEBO)2240906794 035 $a(UnM)9959185400971 035 $a(EXLCZ)993810000000013703 100 $a19910215d1613 uy 101 0 $aeng 135 $aurbn||||a|bb| 200 10$aWits priuate vveath [sic]$b[electronic resource] $eStored with choise commodities to content the minde 210 $aLondon $cPrinted by Edw. Allde, for Iohn Tappe, and are to be sold at his shop at St. Magnus corner$d1613 215 $a[1+] p 300 $aAuthor attribution taken from STC. 300 $aContains printer's device McK. 284. 300 $aThis reel position ilmed twice to adjust exposure. 300 $aA fragment; title page only. 300 $aReproduction of original in the British Library. 330 $aeebo-0018 606 $aAphorisms and apothegms$vEarly works to 1800 608 $aTitle pages$zEngland$y17th cent. 615 0$aAphorisms and apothegms 700 $aBreton$b Nicholas$f1545?-1626?$0694589 801 0$bCu-RivES 801 1$bCu-RivES 801 2$bCStRLIN 801 2$bCu-RivES 906 $aBOOK 912 $a996394961803316 996 $aWits priuate vveath$92414020 997 $aUNISA LEADER 00900nam a2200265 i 4500 001 991002218509707536 005 20020507161436.0 008 000410s1982 it ||| | ita 020 $a8802037280 035 $ab11625648-39ule_inst 035 $aLE02732441$9ExL 040 $aDip.to Studi Giuridici$bita 084 $aPR-XII/A 100 1 $aCostantino, Michele$034332 245 10$aProprietà /$ca cura di Michele Costantino ... [et al.] 260 $aTorino :$bUTET,$cc1982 300 $axxxii, 696 p. ;$c25 cm. 490 0 $aTrattato di diritto privato ;$v7.1 650 4$aDiritto privato 907 $a.b11625648$b01-03-17$c02-07-02 912 $a991002218509707536 945 $aLE027 PR-XII/A 7$g1$i2027000287475$lle027$o-$pE0.00$q-$rl$s- $t0$u2$v1$w2$x0$y.i11843640$z02-07-02 996 $aProprietà$9897786 997 $aUNISALENTO 998 $ale027$b01-01-00$cm$da $e-$fita$git $h0$i1 LEADER 06080nam 22006855 450 001 9910300117603321 005 20200706200448.0 010 $a3-319-94755-9 024 7 $a10.1007/978-3-319-94755-6 035 $a(CKB)3810000000358850 035 $a(MiAaPQ)EBC5447614 035 $a(DE-He213)978-3-319-94755-6 035 $a(PPN)22949644X 035 $a(EXLCZ)993810000000358850 100 $a20180628d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aReflection Positivity $eA Representation Theoretic Perspective /$fby Karl-Hermann Neeb, Gestur Ólafsson 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (135 pages) 225 1 $aSpringerBriefs in Mathematical Physics,$x2197-1757 ;$v32 311 $a3-319-94754-0 327 $aPreface -- Introduction -- Reflection positive Hilbert spaces -- Reflection positive Hilbert spaces -- Reflection positive subspaces as graphs -- The Markov condition -- Reflection positive kernels and distributions -- Reflection positivity in Riemannian geometry -- Selfadjoint extensions and reflection positivity -- Reflection positive representations -- The OS transform of linear operators -- Symmetric Lie groups and semigroups -- Reflection positive representations -- Reflection positive functions -- Reflection positivity on the real line -- Reflection positive functions on intervals -- Reflection positive one-parameter groups -- Reflection positive operator-valued functions -- A connection to Lax?Phillips scattering theory -- Reflection positivity on the circle -- Positive definite functions satisfying KMS conditions -- Reflection positive functions and KMS conditions -- Realization by resolvents of the Laplacian -- Integration of Lie algebra representations -- A geometric version of Fr¨ohlich?s Selfadjointness Theorem -- Integrability for reproducing kernel spaces -- Representations on spaces of distributions -- Reflection positive distributions and representations -- Reflection positive distribution vectors -- Distribution vectors -- Reflection positive distribution vectors -- Spherical representation of the Lorentz group -- Generalized free fields -- Lorentz invariant measures on the light cone and their relatives -- From the Poincar´e group to the euclidean group -- The conformally invariant case -- Reflection positivity and stochastic processes -- Reflection positive group actions on measure spaces -- Stochastic processes indexed by Lie groups -- Associated positive semigroup structures and reconstruction -- A Background material -- A.1 Positive definite kernels -- A.2 Integral representations -- Index. 330 $aRefection Positivity is a central theme at the crossroads of Lie group representations, euclidean and abstract harmonic analysis, constructive quantum field theory, and stochastic processes. This book provides the first presentation of the representation theoretic aspects of Refection Positivity and discusses its connections to those different fields on a level suitable for doctoral students and researchers in related fields. It starts with a general introduction to the ideas and methods involving refection positive Hilbert spaces and the Osterwalder--Schrader transform. It then turns to Reflection Positivity in Lie group representations. Already the case of one-dimensional groups is extremely rich. For the real line it connects naturally with Lax--Phillips scattering theory and for the circle group it provides a new perspective on the Kubo--Martin--Schwinger (KMS) condition for states of operator algebras. For Lie groups Reflection Positivity connects unitary representations of a symmetric Lie group with unitary representations of its Cartan dual Lie group. A typical example is the duality between the Euclidean group E(n) and the Poincare group P(n) of special relativity. It discusses in particular the curved context of the duality between spheres and hyperbolic spaces. Further it presents some new integration techniques for representations of Lie algebras by unbounded operators which are needed for the passage to the dual group. Positive definite functions, kernels and distributions and used throughout as a central tool. 410 0$aSpringerBriefs in Mathematical Physics,$x2197-1757 ;$v32 606 $aTopological groups 606 $aLie groups 606 $aQuantum field theory 606 $aString models 606 $aMathematical physics 606 $aHarmonic analysis 606 $aProbabilities 606 $aTopological Groups, Lie Groups$3https://scigraph.springernature.com/ontologies/product-market-codes/M11132 606 $aQuantum Field Theories, String Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P19048 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 606 $aAbstract Harmonic Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12015 606 $aProbability Theory and Stochastic Processes$3https://scigraph.springernature.com/ontologies/product-market-codes/M27004 615 0$aTopological groups. 615 0$aLie groups. 615 0$aQuantum field theory. 615 0$aString models. 615 0$aMathematical physics. 615 0$aHarmonic analysis. 615 0$aProbabilities. 615 14$aTopological Groups, Lie Groups. 615 24$aQuantum Field Theories, String Theory. 615 24$aMathematical Physics. 615 24$aAbstract Harmonic Analysis. 615 24$aProbability Theory and Stochastic Processes. 676 $a512.2 700 $aNeeb$b Karl-Hermann$4aut$4http://id.loc.gov/vocabulary/relators/aut$060109 702 $aÓlafsson$b Gestur$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910300117603321 996 $aReflection Positivity$92272617 997 $aUNINA