LEADER 02024nam 2200445Ia 450 001 996393911103316 005 20221108093352.0 035 $a(CKB)4940000000116703 035 $a(EEBO)2248568169 035 $a(OCoLC)12277672 035 $a(EXLCZ)994940000000116703 100 $a19850718d1656 uy | 101 0 $alat 135 $aurbn||||a|bb| 200 10$aOikeio?n dialogo?n biblion helle?nisti kai ro?maisti$b[electronic resource] $efamiliarium colloquiorum libellus Græce & Latine, auctus & recognitus : accessit & utilis Dialogus de ratione studiorum recte instituenda : item Oratio de ratione discendæ ac docendæ linguæ Latinæ & Græcæ /$fautore Johanne Posselio 210 $aLondini $cTypis E. Cotes pro Societate Bibliopolarum$d1656 215 $a[109] p 300 $aAscribed generally to Johannes Posselius the Younger; also considered to be the same as the work which Posselius the Elder wrote under the title: Kathe?merine?s homilias biblion. Cf. BM, Allg. deut. Biog., Zedler, J.H. Grosses vollst. Univ.-Lex. 300 $aGreek and Latin on facing pages. 300 $aRunning title: Colloquia familiaria. 300 $aFirst 6 words of title in Greek characters. 300 $aImperfect: pages creased, stained and tightly bound with print show-through and slight loss of print. 300 $aReproduction of original in the University of Illinois (Urbana-Champaign Campus). Library. 330 $aeebo-0167 606 $aGreek language$vConversation and phrase books 606 $aLatin language$vConversation and phrase books 615 0$aGreek language 615 0$aLatin language 700 $aPosselius$b Johannes$f1565-1623.$01009900 701 $aPosselius$b Johannes$f1528-1591.$0744047 801 0$bEAI 801 1$bEAI 801 2$bEAA 801 2$bm/c 801 2$bUMI 801 2$bWaOLN 906 $aBOOK 912 $a996393911103316 996 $aOikeio?n dialogo?n biblion helle?nisti kai ro?maisti$92335643 997 $aUNISA LEADER 05759nam 2200781Ia 450 001 9910811555203321 005 20200520144314.0 010 $a9786613909411 010 $a9783527645015 010 $a3527645012 010 $a9781283596961 010 $a1283596962 010 $a9783527645022 010 $a3527645020 010 $a9783527645121 010 $a3527645128 035 $a(CKB)3460000000080887 035 $a(EBL)1021397 035 $a(OCoLC)818862492 035 $a(SSID)ssj0000700878 035 $a(PQKBManifestationID)11427608 035 $a(PQKBTitleCode)TC0000700878 035 $a(PQKBWorkID)10672676 035 $a(PQKB)10806093 035 $a(MiAaPQ)EBC1021397 035 $a(Au-PeEL)EBL1021397 035 $a(CaPaEBR)ebr10598733 035 $a(CaONFJC)MIL390941 035 $a(Perlego)1011726 035 $a(EXLCZ)993460000000080887 100 $a20111205d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aStatistical modelling of molecular descriptors in QSAR/QSPR /$fedited by Matthias Dehmer, Kurt Varmuza, and Danail Bonchev 205 $a2nd ed. 210 $aWeinheim $cWiley-VCH ;$a[Chichester $cJohn Wiley, distributor]$dc2012 215 $a1 online resource (458 p.) 225 0 $aQuantitative and network biology ;$vv. 2 300 $aDescription based upon print version of record. 311 08$a9783527324347 311 08$a3527324348 320 $aIncludes bibliographical references and index. 327 $aStatistical Modelling of Molecular Descriptors in QSAR/QSPR; Contents; Preface; List of Contributors; 1 Current Modeling Methods Used in QSAR/QSPR; 1.1 Introduction; 1.2 Modeling Methods; 1.2.1 Methods for Regression Problems; 1.2.1.1 Multiple Linear Regression; 1.2.1.2 Partial Least Squares; 1.2.1.3 Feedforward Backpropagation Neural Network; 1.2.1.4 General Regression Neural Network; 1.2.1.5 Gaussian Processes; 1.2.2 Methods for Classification Problems; 1.2.2.1 Logistic Regression; 1.2.2.2 Linear Discriminant Analysis; 1.2.2.3 Decision Tree and Random Forest; 1.2.2.4 k-Nearest Neighbor 327 $a1.2.2.5 Probabilistic Neural Network1.2.2.6 Support Vector Machine; 1.3 Software for QSAR Development; 1.3.1 Structure Drawing or File Conversion; 1.3.2 3D Structure Generation; 1.3.3 Descriptor Calculation; 1.3.4 Modeling; 1.3.5 General purpose; 1.4 Conclusion; References; 2 Developing Best Practices for Descriptor-Based Property Prediction: Appropriate Matching of Datasets, Descriptors, Methods, and Expectations; 2.1 Introduction; 2.1.1 Posing the Question; 2.1.2 Validating the Models; 2.1.3 Interpreting the Models; 2.2 Leveraging Experimental Data and Understanding their Limitations 327 $a2.3 Descriptors: The Lexicon of QSARs2.3.1 Classical QSAR Descriptors and Uses; 2.3.2 Experimentally Derived Descriptors; 2.3.2.1 Biodescriptors; 2.3.2.2 Descriptors from Spectroscopy/Spectrometry and Microscopy; 2.3.3 0D, 1D and 2D Computational Descriptors; 2.3.4 3D Descriptors and Beyond; 2.3.5 Local Molecular Surface Property Descriptors; 2.3.6 Quantum Chemical Descriptors; 2.4 Machine Learning Methods: The Grammar of QSARs; 2.4.1 Principal Component Analysis; 2.4.2 Factor Analysis 327 $a2.4.3 Multidimensional Scaling, Stochastic Proximity Embedding, and Other Nonlinear Dimensionality Reduction Methods2.4.4 Clustering; 2.4.5 Partial Least Squares (PLS); 2.4.6 k-Nearest Neighbors (kNN); 2.4.7 Neural Networks; 2.4.8 Ensemble Models; 2.4.9 Decision Trees and Random Forests; 2.4.10 Kernel Methods; 2.4.11 Ranking Methods; 2.5 Defining Modeling Strategies: Putting It All Together; 2.6 Conclusions; References; 3 Mold2 Molecular Descriptors for QSAR; 3.1 Background; 3.1.1 History of QSAR; 3.1.2 Introduction to QSAR; 3.1.3 Molecular Descriptors: Bridge for QSAR 327 $a3.1.3.1 Molecular Descriptors3.1.3.2 Role of Molecular Descriptors; 3.1.3.3 Types of Molecular Descriptors; 3.1.3.4 Calculation of Molecular Descriptors (Software Packages); 3.2 Mold2 Molecular Descriptors; 3.2.1 Description of Mold2 Descriptors; 3.2.1.1 Topological Descriptors; 3.2.1.2 Constitutional Descriptors; 3.2.1.3 Information Content-based Descriptors; 3.2.2 Calculation of Mold2 Descriptors; 3.2.3 Evaluation of Mold2 Descriptors; 3.2.3.1 Information Content by Shannon Entropy Analysis; 3.2.3.2 Correlations between Descriptors; 3.3 QSAR Using Mold2 Descriptors 327 $a3.3.1 Classification Models based on Mold2 Descriptors 330 $aThis handbook and ready reference presents a combination of statistical, information-theoretic, and data analysis methods to meet the challenge of designing empirical models involving molecular descriptors within bioinformatics. The topics range from investigating information processing in chemical and biological networks to studying statistical and information-theoretic techniques for analyzing chemical structures to employing data analysis and machine learning techniques for QSAR/QSPR.The high-profile international author and editor team ensures excellent coverage of the topic, making th 410 0$aQuantitative and Network Biology (VCH) 606 $aBioinformatics 606 $aMolecules$xModels$xComputer simulation 615 0$aBioinformatics. 615 0$aMolecules$xModels$xComputer simulation. 676 $a572.80285 701 $aDehmer$b Matthias$f1968-$0860612 701 $aVarmuza$b Kurt$f1942-$01636172 701 $aBonchev$b Danail$020960 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910811555203321 996 $aStatistical modelling of molecular descriptors in QSAR$93977324 997 $aUNINA