LEADER 01894nam 2200385Ia 450 001 996388108903316 005 20221108023756.0 035 $a(CKB)4940000000084147 035 $a(EEBO)2264202559 035 $a(UnM)99838430 035 $a(OCoLC)226857864 035 $a(EXLCZ)994940000000084147 100 $a20080501d1548 uy 0 101 0 $aeng 135 $aurbn||||a|bb| 200 13$a[A boke made by Iohan Fryth, prysoner in the Towr of London]$b[electronic resource] $e[answering vnto. M. Mores letter, which he wrote against the fyrst lytle treatyse that Iohan Fryth made concerning the sacrament of the body and bloud of Christ: vnto which boke are added in the ende the artycles of his examination before the bysshoppes ... for whych Iohn Frith was condempned and after brente ... the forth day of Iuly. Anno. 1533.] 205 $a[Now newely reuised, corrected & printed in the yeare of our Lord. 1548. the last daye of Iune.] 210 $a[Imprinted at London $cby Anthony Scoloker and William Seres dwelling wythout Aldersgte$d1548] 215 $a[8+] p 300 $aA reply to: More, Sir Thomas. A letter of syr Tho. More knyght impugnynge the erronyouse wrytyng of J. Fryth. 300 $aImprint from colophon. 300 $aFragment: part of quire B, bound and filmed out of order: B6, B7, B2, B3. 300 $aReproduction of original in: British Library. 330 $aeebo-0018 517 3 $aBoke answeringe unto M Mores lettur 517 3 $aBoke made by Johan Fryth, prysoner in the Towr of London 606 $aLord's Supper$xReal presence$vControversial literature 615 0$aLord's Supper$xReal presence 700 $aFrith$b John$f1503-1533.$01000890 801 0$bUMI 801 1$bUMI 906 $aBOOK 912 $a996388108903316 996 $aA boke made by Iohan Fryth, prysoner in the Towr of London$92354146 997 $aUNISA LEADER 03910nam 2200961z- 450 001 9910404075603321 005 20210212 010 $a3-03928-709-5 035 $a(CKB)4100000011302382 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/60381 035 $a(oapen)doab60381 035 $a(EXLCZ)994100000011302382 100 $a20202102d2020 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aSymmetry in Classical and Fuzzy Algebraic Hypercompositional Structures 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2020 215 $a1 online resource (208 p.) 311 08$a3-03928-708-7 330 $aThis book is a collection of 12 innovative research papers in the field of hypercompositional algebra, 7 of them being more theoretically oriented, with the other 5 presenting strong applicative aspects in engineering, control theory, artificial intelligence, and graph theory. Hypercompositional algebra is now a well-established branch of abstract algebra dealing with structures endowed with multi-valued operations, also called hyperoperations, having a set as the result of the interrelation between two elements of the support set. The theoretical papers in this book are principally related to three main topics: (semi)hypergroups, hyperfields, and BCK-algebra. Heidari and Cristea present a natural generalization of breakable semigroups, defining the breakable semihypergroups where every non-empty subset is a subsemihypergroup. Using the fundamental relation ? on a hypergroup, some new properties of the 610 $a(hyper)homography 610 $a1-hypergroup 610 $aapplication 610 $abreakable semigroup 610 $aclustering protocols 610 $aedge regular 610 $aego networks 610 $afunctions on multiset 610 $afundamental equivalence relation 610 $afundamental relation 610 $afuzzy multi-Hv-ideal 610 $afuzzy multiset 610 $agranular computing 610 $aheight 610 $aHv-ideal 610 $aHv-ring 610 $aHv-structures 610 $ahyperfield 610 $ahypergroup 610 $ahyperideal 610 $ahyperring 610 $aintuitionistic fuzzy soft hyper BCK ideal 610 $aintuitionistic fuzzy soft s-weak hyper BCK-ideal 610 $aintuitionistic fuzzy soft strong hyper BCK-ideal 610 $aintuitionistic fuzzy soft weak hyper BCK ideal 610 $ainvertible subhypergroup 610 $alevel hypergraphs 610 $alinear differential operator 610 $alower approximation 610 $alower BCK-semilattice 610 $am-polar fuzzy equivalence relation 610 $am-polar fuzzy hypergraphs 610 $aminimal prime decomposition 610 $aminimal prime factor 610 $amultiset 610 $amultisets 610 $aordered group 610 $aperfect edge regular 610 $aq-rung picture fuzzy graphs 610 $aq-rung picture fuzzy line graphs 610 $aquasi-automaton 610 $aquasi-multiautomaton 610 $arelative annihilator 610 $arough set 610 $aselection operation 610 $asemi-prime closure operation 610 $asemi-symmetry 610 $asemihypergroup 610 $asingle-power cyclic hypergroup 610 $asquare q-rung picture fuzzy graphs 610 $asubmultiset 610 $atime-varying artificial neuron 610 $atransposition hypergroup 610 $aupper approximation 610 $aUWSN 700 $aCristea$b Irina$4auth$0739796 906 $aBOOK 912 $a9910404075603321 996 $aSymmetry in Classical and Fuzzy Algebraic Hypercompositional Structures$93024326 997 $aUNINA