LEADER 01266nam 2200373Ia 450 001 996386618703316 005 20221108030012.0 035 $a(CKB)4940000000077805 035 $a(EEBO)2240946361 035 $a(OCoLC)12576269 035 $a(EXLCZ)994940000000077805 100 $a19850919d1693 uy | 101 0 $aeng 135 $aurbn||||a|bb| 200 14$aThe duty and encouragement of religious artificers$b[electronic resource] $edescribed in a sermon preached in the Cathedral Church of Norwich at the Weavers Guild, on Munday in Whitsun-week, June 5, 1693 /$fby John Jeffery .. 210 $aCambridge $cPrinted by John Hayes, for Samuel Oliver ...$d1693 215 $a[4], 21 p 300 $aReproduction of original in Cambridge University Library. 330 $aeebo-0021 606 $aArtisans$zGreat Britain 606 $aArtisans$vSermons 606 $aSermons, English$y17th century 615 0$aArtisans 615 0$aArtisans 615 0$aSermons, English 700 $aJeffery$b John$f1647-1720.$01002489 801 0$bEAA 801 1$bEAA 801 2$bm/c 801 2$bWaOLN 906 $aBOOK 912 $a996386618703316 996 $aThe duty and encouragement of religious artificers$92361746 997 $aUNISA LEADER 02826nam 22004455 450 001 9910254291203321 005 20200704082519.0 010 $a3-319-50853-9 024 7 $a10.1007/978-3-319-50853-5 035 $a(CKB)3710000001079874 035 $a(DE-He213)978-3-319-50853-5 035 $a(MiAaPQ)EBC5579667 035 $a(PPN)198873301 035 $a(EXLCZ)993710000001079874 100 $a20170213d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAlgebra II $eTextbook for Students of Mathematics /$fby Alexey L. Gorodentsev 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (XV, 370 p. 155 illus., 2 illus. in color.) 311 $a3-319-50852-0 327 $a§1Tensor Products -- §2 Tensor Algebras -- §3 Symmetric Functions -- §4 Calculus of Arrays, Tableaux, and Diagrams -- §5 Basic Notions of Representation Theory -- §6 Representations of Finite Groups in Greater Detail -- §7 Representations of Symmetric Groups -- §8 sl_2-Modules -- §9 Categories and Functors -- §10 Extensions of Commutative Rings -- §11 Affine Algebraic Geometry -- §12 Algebraic Manifolds -- §13 Algebraic Field Extensions -- §14 Examples of Galois Groups -- References -- Hints to Some Exercises -- Index. 330 $aThis book is the second volume of an intensive ?Russian-style? two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures ? fields, rings, modules, algebras, groups, and categories ? and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry ? topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study. 606 $aAlgebra 606 $aAlgebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11000 615 0$aAlgebra. 615 14$aAlgebra. 676 $a512.9 700 $aGorodentsev$b Alexey L$4aut$4http://id.loc.gov/vocabulary/relators/aut$0755813 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254291203321 996 $aAlgebra II$92155928 997 $aUNINA