LEADER 01560nam 2200373Ia 450 001 996385871303316 005 20200818215753.0 035 $a(CKB)4940000000078709 035 $a(EEBO)2240961941 035 $a(OCoLC)ocm12730339e 035 $a(OCoLC)12730339 035 $a(EXLCZ)994940000000078709 100 $a19851028d1679 uy | 101 0 $aeng 135 $aurbn||||a|bb| 200 10$aChamberlain's Arithmetick$b[electronic resource] $ebeing a plain and easie explanation of the most useful and necessary art of arithmetick in whole numbers and fractions, that the meanest capacity may obtain the knowledge thereof in a very short time : whereunto are added many rules and tables of interest, rebate, purchases, gaging of cask, and extraction of the square and cube roots /$fcomposed by Robert Chamberlain, accomptant and practitioner in the mathematicks 210 $aLondon $cPrinted for John Clark ...$d1679 215 $a[12], 347 [i.e. 345] p 300 $aEngraved frontispiece portrait of Chamberlain. 300 $aErrata: p. [12] 300 $aImperfect: pages faded and stained with slight loss of print. 300 $aReproduction of original in the British Library. 330 $aeebo-0018 606 $aMathematics$vEarly works to 1800 615 0$aMathematics 700 $aChamberlain$b Robert$ffl. 1678-1679.$01021647 801 0$bEAH 801 1$bEAH 801 2$bUMI 801 2$bWaOLN 906 $aBOOK 912 $a996385871303316 996 $aChamberlain's Arithmetick$92424678 997 $aUNISA LEADER 02399nam0 22005653i 450 001 VAN00286849 005 20250416043616.606 017 70$2N$a9783540463948 100 $a20250213d1990 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 181 $ai$b e 182 $ab 183 $acr 200 1 $aEquivariant Surgery Theories and Their Periodicity Properties$fKarl Heinz Dovermann, Reinhard Schultz 210 $aBerlin$cSpringer-Verlag$d1990 215 $aviii, 228 p.$cill.$d24 cm 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v1443 606 $a57-XX$xManifolds and cell complexes [MSC 2020]$3VANC019671$2MF 606 $a57R65$xSurgery and handlebodies [MSC 2020]$3VANC024170$2MF 606 $a57R67$xSurgery obstructions, Wall groups [MSC 2020]$3VANC021995$2MF 606 $a57R91$xEquivariant algebraic topology of manifolds [MSC 2020]$3VANC033183$2MF 606 $a57S15$xCompact Lie groups of differentiable transformations [MSC 2020]$3VANC035237$2MF 606 $a57S17$xFinite transformation groups [MSC 2020]$3VANC023992$2MF 610 $aArea$9KW:K 610 $aBoundary Element Methods$9KW:K 610 $aDesign$9KW:K 610 $aEquivalence$9KW:K 610 $aForms$9KW:K 610 $aGeometric topology$9KW:K 610 $aGroup actions$9KW:K 610 $aGroups$9KW:K 610 $aManifolds$9KW:K 610 $aSurgery$9KW:K 610 $aTransformation$9KW:K 610 $aTransformation groups$9KW:K 620 $dBerlin$3VANL000066 700 1$aDovermann$bKarl H.$3VANV241159$01783750 701 1$aSchultz$bReinhard$3VANV241161$0441092 712 $aSpringer $3VANV108073$4650 790 1$aDovermann, Karl Heinz$zDovermann, Karl H.$3VANV241160 801 $aIT$bSOL$c20250926$gRICA 856 4 $uhttps://doi.org/10.1007/BFb0092354$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00286849 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-Book 10663 $e08eMF10663 20250228 996 $aEquivariant Surgery Theories and Their Periodicity Properties$94312043 997 $aUNICAMPANIA