LEADER 00690nam1 22002533i 450 001 996329149303316 005 20200228102559.0 100 $a20191211d2019----||||0itac50 ba 101 $aita 102 $aIT 200 1 $a<> principio speranza$fErnst Bloch$gintroduzione di Remo Bodei 210 $aMilano$aUdine$cMimesis$d2019 215 $a3 volumi$d21 cm 454 10$a<> Prinzip Hoffnung 676 $a193 700 1$aBLOCH,$bErnst$f<1885-1977>$0127527 702 1$aBODEI,$bRemo 801 0$aIT$bsalbc$gISBD 912 $a996329149303316 951 $aII.1.D. 6803$bL.M.$cII.1.D. 959 $aBK 969 $aUMA 996 $aPrincipio speranza$91733948 997 $aUNISA LEADER 03144nam 2200517 450 001 9910478891803321 005 20211029210852.0 010 $a1-4704-4819-X 035 $a(CKB)4100000007133850 035 $a(MiAaPQ)EBC5571103 035 $a(PPN)231946198 035 $a(Au-PeEL)EBL5571103 035 $a(OCoLC)1042567976 035 $a(EXLCZ)994100000007133850 100 $a20181203d2018 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 12$aA Morse-Bott approach to monopole Floer homology and the triangulation conjecture /$fFrancesco Lin 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2018] 210 4$d©2018 215 $a1 online resource (174 pages) 225 1 $aMemoirs of the American Mathematical Society ;$vVolume 255, Number 1221 311 $a1-4704-2963-2 320 $aIncludes bibliographical references. 327 $aCover -- Title page -- Chapter 1. Introduction -- Chapter 2. Basic setup -- 2.1. The monopole equations -- 2.2. Blowing up the configuration spaces -- 2.3. Completion and slices -- 2.4. Perturbations -- Chapter 3. The analysis of Morse-Bott singularities -- 3.1. Hessians and Morse-Bott singularities -- 3.2. Moduli spaces of trajectories -- 3.3. Transversality -- 3.4. Compactness and finiteness -- 3.5. Gluing -- 3.6. The moduli space on a cobordism -- Chapter 4. Floer homology for Morse-Bott singularities -- 4.1. Homology of smooth manifolds via stratified spaces -- 4.2. Floer homology -- 4.3. Invariance and functoriality -- Chapter 5. \Pin-monopole Floer homology -- 5.1. An involution in the theory -- 5.2. Equivariant perturbations and Morse-Bott transversality -- 5.3. Invariant chains and Floer homology -- 5.4. Some computations -- 5.5. Manolescu's invariant and the Triangulation conjecture -- Bibliography -- Back Cover. 330 $aIn the present work the author generalizes the construction of monopole Floer homology due to Kronheimer and Mrowka to the case of a gradient flow with Morse-Bott singularities. Focusing then on the special case of a three-manifold equipped equipped with a {\rm spin}^c structure which is isomorphic to its conjugate, the author defines the counterpart in this context of Manolescu's recent Pin(2)-equivariant Seiberg-Witten-Floer homology. In particular, the author provides an alternative approach to his disproof of the celebrated Triangulation conjecture. 410 0$aMemoirs of the American Mathematical Society ;$vVolume 255, Number 1221. 606 $aTriangulation 606 $aManifolds (Mathematics) 606 $aFloer homology 608 $aElectronic books. 615 0$aTriangulation. 615 0$aManifolds (Mathematics) 615 0$aFloer homology. 676 $a514/.34 700 $aLin$b Francesco$f1988-$01046835 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910478891803321 996 $aA Morse-Bott approach to monopole Floer homology and the triangulation conjecture$92474058 997 $aUNINA LEADER 00972ojm 2200241z- 450 001 9910155748603321 005 20230913112557.0 010 $a1-5124-4170-8 035 $a(CKB)3710000000976051 035 $a(BIP)058891989 035 $a(EXLCZ)993710000000976051 100 $a20231107c2017uuuu -u- - 101 0 $aeng 200 10$aBMX Vert 210 $cLerner 215 $a1 online resource (32 p.) 330 8 $aAudisee® eBooks with Audio combine professional narration and sentence highlighting to engage reluctant readers! Did you know that the top BMX vert riders can race up and down ramps to show off awesome stunts like no-handed 900° aerial spins? They can rotate their bikes two and a half times while airborne. They do moves such as cliffhangers and tailwhips, wowing fans and judges alike. 676 $a796.622 700 $aCain$b Patrick G.$01435553 906 $aAUDIO 912 $a9910155748603321 996 $aBMX Vert$93593640 997 $aUNINA