LEADER 01584nas 2200481- 450 001 996321918003316 005 20210920213022.0 011 $a2299-8624 035 $a(OCoLC)905958616 035 $a(CKB)2550000001203401 035 $a(CONSER)--2016238346 035 $a(DE-599)ZDB2817810-5 035 $a(EXLCZ)992550000001203401 100 $a20150303a20129999 --- - 101 0 $aeng 135 $aurmnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aAdvances in science & technology, research journal 210 1$aWarsaw :$cSociety of Polish Mechanical Engineers & Technicians :$aLublin :$cScientific Publishing House 215 $a1 online resource 311 $a2080-4075 517 1 $aASTRJ 606 $aTechnology$xResearch$vPeriodicals 606 $aEngineering$xResearch$vPeriodicals 606 $aResearch$vPeriodicals 606 $aEngineering$xResearch$2fast$3(OCoLC)fst00910387 606 $aResearch$2fast$3(OCoLC)fst01095153 606 $aTechnology$xResearch$2fast$3(OCoLC)fst01145190 608 $aPeriodicals.$2fast 610 $aTechnology - General 615 0$aTechnology$xResearch 615 0$aEngineering$xResearch 615 0$aResearch 615 7$aEngineering$xResearch. 615 7$aResearch. 615 7$aTechnology$xResearch. 712 02$aStowarzyszenie In?ynierów i Techników Mechaników Polskich, 906 $aJOURNAL 912 $a996321918003316 996 $aAdvances in science & technology, research journal$92225626 997 $aUNISA LEADER 05323nam 2200577 450 001 9910830167403321 005 20170920005912.0 010 $a1-119-33018-1 010 $a1-119-33020-3 010 $a1-119-32994-9 035 $a(CKB)3710000000838528 035 $a(EBL)4692005 035 $a(MiAaPQ)EBC4692005 035 $a(PPN)195581229 035 $a(EXLCZ)993710000000838528 100 $a20160513d2016 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aNanothermites /$fEric Lafontaine, Marc Comet 210 1$aHoboken, New Jersey :$cISTE Ltd/John Wiley and Sons Inc,$d2016. 215 $a1 online resource (349 p.) 225 1 $aNanoscience and nanotechnology series 300 $aDescription based upon print version of record. 311 $a1-84821-837-0 327 $aCover; Title Page; Copyright; Contents; Introduction; 1: Elaboration of Nanoparticles; 1.1. Solid-phase elaboration; 1.1.1. Mechanical milling; 1.1.1.1. Principle; 1.1.1.2. The main types of mills; 1.1.1.3. Milling parameters; 1.1.1.4. Mechanosynthesis; 1.1.1.5. Conclusion; 1.2. Liquid-phase elaboration; 1.2.1. Sonochemistry; 1.2.1.1. Principle; 1.2.1.2. Effects of implementation parameters; 1.2.1.2.1. Power of emission; 1.2.1.2.2. Frequency of emission; 1.2.1.2.3. Amplitude of emission; 1.2.1.2.4. Duration of emission; 1.2.1.2.5. Impact of solvent; 1.2.1.3. Conclusion 327 $a1.2.2. Microemulsion synthesis1.2.2.1. Definition; 1.2.2.2. Preparation of nanoparticles; 1.2.2.3. Mechanisms involved; 1.2.2.4. Influence of implementation parameters; 1.2.2.4.1. Concentration of surfactant; 1.2.2.4.2. Nature of surfactant; 1.2.2.4.3. Reaction rate; 1.2.2.5. Conclusion; 1.2.3. Solvothermal syntheses; 1.2.3.1. Principle; 1.2.3.2. Effect of temperature; 1.2.3.3. Effect of precursor concentration; 1.2.3.4. Effect of surfactant presence; 1.2.3.5. Effect of pH; 1.2.3.6. Effect of solvent; 1.2.3.7. Effect of anion; 1.2.3.8. Effect of duration; 1.2.3.9. Microwave-assisted synthesis 327 $a1.2.3.10. Conclusion1.2.4. Sol-gel syntheses; 1.2.4.1. Principle; 1.2.4.2. Influence of operating conditions; 1.2.4.2.1. Effect of temperature; 1.2.4.2.2. Effect of solvent; 1.2.4.2.3. Effect of pH; 1.2.4.2.4. Effect of salt addition; 1.2.4.2.5. Effect of surfactant; 1.2.4.3. Conclusion; 1.3. Gas-phase elaboration; 1.3.1. Condensation in inert gas; 1.3.1.1. Principle; 1.3.1.2. Influence of operating conditions; 1.3.1.3. Conclusion; 1.3.2. Explosion of metal wires; 1.3.2.1. Principle; 1.3.2.2. Influence of operating conditions; 1.3.2.2.1. Effect of pressure; 1.3.2.2.2. Effect of gas nature 327 $a1.3.2.3. Passivation1.3.2.4. Conclusion; 1.3.3. Thermal plasma synthesis; 1.3.3.1. Direct current (DC) and low frequencies (AC) discharges; 1.3.3.1.1. Blown arc plasma in direct current; 1.3.3.1.2. Transferred arc plasma; 1.3.3.2. RF plasma; 1.3.3.2.1. RF inductively coupled plasma; 1.3.3.2.2. RF capacitively coupled plasma; 1.3.3.3. Microwave discharge plasmas; 1.3.3.4. Thermal plasma in solution; 1.3.4. Laser ablation; 1.3.4.1. Long pulse; 1.3.4.2. Ultrashort (picoseconds and femtoseconds) pulses; 1.3.4.3. Plasma expansion under vacuum or low pressure; 1.3.4.4. Laser ablation in liquids 327 $a1.3.4.5. Effect of laser parameters1.3.4.5.1. Effect of number of pulses; 1.3.4.5.2. Effect of pulse duration; 1.3.4.5.3. Effect of wavelength; 1.3.4.5.4. Effect of fluence; 1.3.4.5.5. Effect of gas pressure; 1.3.4.5.6. Effect of solvent nature; 1.3.4.5.7. Effect of surfactants; 1.3.4.5.8. Effect on colloids in suspension; 1.3.4.6. Conclusion; 1.3.5. Pyrotechnic synthesis; 1.3.5.1. Detonation synthesis; 1.3.5.2. Deflagration synthesis; 1.3.5.3. Combustion synthesis; 1.3.5.4. Conclusion; 2: Methods for Preparing Nanothermites; 2.1. Introduction; 2.2. Physical mixing; 2.2.1. Mixing in hexane 327 $a2.2.2. Mixing in isopropanol 330 $a"The recent introduction of the nano dimension to pyrotechnics has made it possible to develop a new family of highly reactive substances: nanothermites. These have a chemical composition that is comparable to that of thermites at submillimeter or micrometric granulometry, but with a morphology having a much increased degree of homogeneity. Their reactivity can be specifically defined by playing with the numerous parameters offered by nanomaterial engineering (particle size, degree of homogenization of reactive phases, addition of gas generating agents, etc.), which opens up immense prospects for applications in the pyrotechnic systems of the future. This book discusses the methods of preparation of these energetic nanomaterials, their specific properties, and the different safety aspects inherent in their manipulation."$c--back cover. 410 0$aNanoscience and nanotechnology series. 606 $aThermit 606 $aMetal powders 606 $aNanoparticles 615 0$aThermit. 615 0$aMetal powders. 615 0$aNanoparticles. 676 $a671.3/7 700 $aLafontaine$b Eric$01611287 702 $aComet$b Marc 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830167403321 996 $aNanothermites$93939474 997 $aUNINA