LEADER 01301nas 2200409- 450 001 996321258403316 005 20210918213024.0 035 $a(OCoLC)1125877362 035 $a(CKB)4100000007805751 035 $a(CONSER)--2020236517 035 $a(EXLCZ)994100000007805751 100 $a20190819a20089999 --r - 101 0 $aper 135 $aurunu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMud?r?yat-i dawlat? 210 1$a[Tihr?n] :$cD?nishkadah-i Mud?r?yat, D?nishg?h-i Tihr?n,$d[2008]- 215 $a1 online resource 300 $aRefereed/Peer-reviewed 311 $a2008-5877 517 1 $aNashr?yah-i mud?r?yat-i dawlat? 517 1 $aJournal of public administration 606 $aPublic administration$vPeriodicals 606 $aPublic administration$zIran$vPeriodicals 606 $aPublic administration$2fast$3(OCoLC)fst01081976 607 $aIran$2fast 608 $aPeriodicals.$2fast 615 0$aPublic administration 615 0$aPublic administration 615 7$aPublic administration. 712 02$aD?nishg?h-i Tihr?n.$bD?nishkadah-?i Mud?r?yat, 906 $aJOURNAL 912 $a996321258403316 996 $aMud?r?yat-i dawlat?$92575653 997 $aUNISA LEADER 02432nam0 2200421 i 450 001 VAN00053138 005 20250428101547.563 010 $a978-08-218-2659-1 100 $a20060925d2001 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $aLayer potentials, the Hodge Laplacian, and global boundary problems innonsmooth Riemannian manifolds$fDorina Mitrea, Marius Mitrea, Michael Taylor 210 $aProvidence, R.I.$cAmerican mathematical society$d2001 215 $aVIII, 120 p.$d26 cm 410 1$1001VAN00024370$12001 $aMemoirs of the American Mathematical Society$1210 $aProvidence$cAmerican mathematical society$v713 606 $a31A10$xIntegral representations, integral operators, integral equations methods in two dimensions [MSC 2020]$3VANC029359$2MF 606 $a31C12$xPotential theory on Riemannian manifolds and other spaces [MSC 2020]$3VANC023136$2MF 606 $a35-XX$xPartial differential equations [MSC 2020]$3VANC019763$2MF 606 $a35Jxx$xElliptic equations and elliptic systems [MSC 2020]$3VANC022717$2MF 606 $a42B20$xSingular and oscillatory integrals (Calderón-Zygmund, etc.) [MSC 2020]$3VANC021614$2MF 606 $a45E05$xIntegral equations with kernels of Cauchy type [MSC 2020]$3VANC023137$2MF 606 $a58A14$xHodge theory in global analysis [MSC 2020]$3VANC023135$2MF 606 $a58J05$xElliptic equations on manifolds, general theory [MSC 2020]$3VANC023134$2MF 606 $a58J32$xBoundary value problems on manifolds [MSC 2020]$3VANC022824$2MF 606 $a78A30$xElectro- and magnetostatics [MSC 2020]$3VANC022475$2MF 620 $aUS$dProvidence$3VANL000273 700 1$aMitrea$bDorina$3VANV041937$0521700 701 1$aMitrea$bMarius$3VANV041938$0441111 701 1$aTaylor$bMichael$3VANV030680$041937 712 $aAmerican mathematical society$3VANV108732$4650 801 $aIT$bSOL$c20250502$gRICA 856 4 $u/sebina/repository/catalogazione/documenti/ID 53138.pdf$zID 53138.pdf 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $aVAN00053138 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 35-XX 2811 $e08 6354 I 20060925 996 $aLayer potentials, the Hodge Laplacian, and global boundary problems innonsmooth Riemannian manifolds$91427287 997 $aUNICAMPANIA