LEADER 03242nam 2200613 450 001 996309148703316 005 20210513202614.0 010 $a3-11-042624-2 010 $a3-11-040947-X 024 7 $a10.2478/9783110409475 035 $a(CKB)3710000000346221 035 $a(SSID)ssj0001539243 035 $a(PQKBManifestationID)11921758 035 $a(PQKBTitleCode)TC0001539243 035 $a(PQKBWorkID)11531111 035 $a(PQKB)11462663 035 $a(MiAaPQ)EBC1787230 035 $a(DE-B1597)445368 035 $a(OCoLC)1013956286 035 $a(OCoLC)954882664 035 $a(DE-B1597)9783110409475 035 $a(Au-PeEL)EBL1787230 035 $a(CaPaEBR)ebr11054944 035 $a(OCoLC)939262778 035 $a(EXLCZ)993710000000346221 100 $a20150531h20142014 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMathematics for the physical sciences /$fLeslie Copley; managing editor, Paulina Les?na-Szreter 210 1$aWarsaw, [Poland] ;$aBerlin, [Germany] :$cDe Gruyter Open,$d2014. 210 4$d©2014 215 $a1 online resource (445 pages) $cillustrations 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-11-040945-3 320 $aIncludes bibliographical references. 327 $tFront matter --$tContents --$tForeword --$t1 Functions of a Complex Variable --$t2 Cauchy's Theorem --$t3 The Calculus of Residues --$t4 Dispersion Representations --$t5 Analytic Continuation --$t6 Asymptotic Expansions --$t7 Padé Approximants --$t8 Fourier Series and Transforms --$t9 Ordinary Linear Differential Equations --$t10 Partial Differential Equations and Boundary Value Problems --$t11 Special Functions --$t12 Non-Homogeneous Boundary Value Problems: Green's Functions --$t13 Integral Equations --$tBibliography 330 $aThe book begins with a thorough introduction to complex analysis, which is then used to understand the properties of ordinary differential equations and their solutions. The latter are obtained in both series and integral representations. Integral transforms are introduced, providing an opportunity to complement complex analysis with techniques that flow from an algebraic approach. This moves naturally into a discussion of eigenvalue and boundary vale problems. A thorough discussion of multi-dimensional boundary value problems then introduces the reader to the fundamental partial differential equations and "special functions" of mathematical physics. Moving to non-homogeneous boundary value problems the reader is presented with an analysis of Green's functions from both analytical and algebraic points of view. This leads to a concluding chapter on integral equations. 606 $aMathematical physics 608 $aElectronic books. 610 $amathematical physics, boundary value problems. 615 0$aMathematical physics. 676 $a530.15 700 $aCopley$b Leslie$0803381 702 $aPaulina Les?na-Szreter 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996309148703316 996 $aMathematics for the Physical Sciences$91804618 997 $aUNISA